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A Method for Analyzing Loop Programs
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Abstract—This paper presents a method for automatically analyzing
loops, and discusses why it is a useful way to look at loops. The
method is based on the idea that there are four basic ways in which the
logical structure of a loop is built up. An experiment is presented which
shows that this accounts for the structure of a large class of loops. The
paper discusses how the method can be used to automatically analyze
the structure of a loop, and how the resulting analysis can be used to
guide a proof of correctness for the loop. An automatic system is
described which performs this type of analysis. The paper discusses
the relationship between the structure building methods presented and
programming language constructs. A system is described which is
designed to assist a person who is writing a program. The intent is that
the system will cooperate with a programmer throughout all phases of
work on a program and be able to communicate with the programmer
about it.

Index Terms—Loops, plans, program analysis, program verification,
program understanding.

I. INTRODUCTION

HIS paper presents one part of a general method (de-

scribed in full in [28]) for analyzing programs. The
result of an analysis is a “plan” which represents the under-
lying logical structure of a program. The plan directly specifies
how the parts of the program interact in order to produce the
behavior of the program. It abstracts away from the surface
syntactic details of the code for a program and is substantially
programming language independent. The analysis method is
based on the observation that plans are built up in a small
number of stereotyped ways referred to as plan building meth-
ods (PBM’s). This paper discusses the four PBM’s which build
up plans for loops.

An important application of PBM’s is that they can be used
to analyze a loop in a way that makes it easier to understand
what the loop does and why. Section II shows why this is a
more useful analysis than one based on basic structured pro-
gramming constructs. Section III describes the PBM’s in detail
from the point of view of their use in analysis. Section IV
discusses how an analysis of a loop in terms of the PBM’s can
be used to guide a proof of correctness for the loop. It also
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shows why the resulting proof is more useful than a proof
based on a single loop invariant.

An experiment is discussed in Section V which shows that
the PBM’s can be used to analyze the loops in a representative
sample of programs from the IBM Scientific Subroutine Pack-
age (SSP) [12]. The SSP was chosen as an object of study
because it is a large group of clearly written programs which is
an actual commercial product. The experiment also shows
that the pieces which result from the analysis are largely simple
and easy to understand. A system (described in Section VI)
has been implemented which performs this type of analysis
automatically. Section VII describes the relationship between
the PBM’s and current programming language constructs. It
also discusses how a language could be extended in order to
include constructs based on the PBM’s.

The method for analyzing the logical structure of loops pre-
sented in this paper was developed as part of a larger research
project. The goal of this project is to develop a system which
can assist a person who is writing a program. Research on this
system [20]-[23], [25], [27], [28] is being carried out by a
group consisting of C. Rich, H. Shrobe, and the author. The
intent is that the system will cooperate with a programmer
throughout all phases of work on a program and be able to
communicate with him about it. The system is described in
Section VIII.

II. DESIDERATA FOR AN ANALYSIS METHOD

An analysis method views a program as built up out of parts,
and makes it possible to understand the relationship between
the operation of the program as a whole and the operation of
its parts. From the point of view of gaining an understanding
of a program, the parts are subproblems. Once the parts have
been understood, their understandings can be combined in
order to obtain an understanding of the whole.

There are several criteria which can be used to evaluate the
usefulness of an analysis method. First, given a program, it
should be straightforward to identify the parts. Second, the
parts should be easier to understand than the whole. Third,
the process of developing an understanding of the whole based
on understandings of its parts should be as easy as possible.

The development which is most similar to PBM’s has been
the development of structured programming constructs. Con-
sider the loop program in Fig. 1. A naive approach to looking
at how this program is logically built up is based on the idea
that it is constructed on a line by line basis. Given this ap-
proach, it is easy to analyze the program in order to break it
up into its component parts (the six lines of the program).
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1=1;
Z=0;
LOOP: IF NOT(A(I)>0) THEN GOTO SKIP;
Z = Z+A(1);
SKIP: 1 =]+1;

IF ISN THEN GOTO LOOP;
Fig. 1. An example program.

Z=0;
DO I=1 TO N;
IF A(1)>0
THEN Z = Z+A(D);
END;
Fig. 2. The example program from Fig. 1 in structured form.

Further, the parts are indeed much easier to understand than
the program as a whole. However, the problem with this ap-
proach is that it is not at all easy to discover what the program
does once the parts are understood, because the effects of the
lines upon each other are complex.

The basic structured programming constructs (composition,
if-then-else, and do-while) suggest a much better analysis
method. They indicate that the program should be viewed
logically as being built up hierarchically using these structured
programming constructs. Fig. 2 depicts the program in Fig. 1
analyzed in terms of the three basic structured program-
ming constructs. The program is analyzed as being a composi-
tion of “z=0" with an extended form of do-while which
consists of counting from 1 to N in 1 and a body which is an
if-then-else consisting of a predicate “A(1)>0"" and a then clause
“z=Z+A(1).”

When it is possible without transforming a program, this is
an easy analysis to perform. This is true whether or not the
program is written in a syntactically structured way. It is pos-
sible to write a program which cannot be analyzed in terms of
the basic structured programming constructs, unless it is first
transformed to change the topology of its control flow (for
example, a program which contains a loop with more than one
entry point). However, a large number of programs can be
directly analyzed in this way. In any case, the parts are easy
to understand once they are isolated.

Let us now look at the structured programming oriented
approach in the light of how easy it is to develop an under-
standing of the result based on understandings of its parts.
First consider if-then-else. If the parts are understood, then
it is easy to get an understanding of the whole. Namely, in a
given situation an if-then-else either acts like the then clause,
or like the else clause, depending on the value of the predicate.
In Fig. 2 the if-then-else adds A1) to z if A(1)>0. Composi-
tion is also an easy operation to understand. In general, these
two structured programming constructs, which describe non-
looping programs, meet the criteria set forth above very well.
The general method described in [28] uses five PBM’s closely
related to these two structured programming constructs in
order to analyze straight-line sections of programs.
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A B C
DO I=1 TO N; Z2=0;
END; IF A()>0 THEN Z = Z+A(1);
Fig. 3. The example program from Fig. 1 analyzed by PBM’s.

Consider the construct do-while in the light of how easy it is
to develop an understanding of the resulting program based on
understandings of its parts. The body of the loop in Fig. 2 can
be understood as a conditional which adds A(1) to z if A(1)>0.
Unfortunately, it is not easy to go from this to an understand-
ing that the loop adds the sum of the positive members of the
first N elements of A to the initial value of z. It is easy to con-
clude this if an appropriate loop invariant can be found. How-
ever, in general, it is not easy to find such an invariant.

Another problem with the analysis in the figure is that
the close relationship between the statements “z=0" and
“z=z+A(1)” is not made clear. In order to meet the goal of
analyzing a program in such a way that things which are inti-
mately related are closely linked together, these two state-
ments should be put together in a single locality distinct from
the rest of the loop. Having the statements spread through the
loop makes it harder to understand that the program as a
whole computes the sum of the positive members of the first
N elements of A.

The difficulties with do-while stem from the way it looks at
a loop. The body of the loop is first analyzed like any other
straight-line program. This understanding of the body is then
bootstrapped up to an understanding of the loop as a whole.
The problem is that this bootstrapping process is far from
automatic. The PBM’s for loops take a different approach.
They are based on the idea that the body of a loop should not
be analyzed in the same way as a straight-line program.
Instead, they break the loop up in order to analyze it as built
up out of stereotyped loop fragments. The lines “z=0"" and
“z=z+A(1)” are an example of just such a fragment.

The PBM’s for loops break the loop in Fig. 2 up into three
fragments, as shown in Fig. 3. The first fragment (A) counts up
by one from one to N. It enumerates the sequence of integers
{1,2,---N}. (Note that this fragment corresponds to the po
construct itself.) The second fragment (B) operates on the
sequence of integers produced by the first. It restricts the
sequence by selecting only those integers which correspond to
positive elements of the vector A. The last fragment (C) com-
putes the sum of the elements of A corresponding to the inte-
gers in the restricted sequence produced by B. In the loop as a
whole, the three fragments are cascaded together so that the
loop computes the sum of the positive members of the first N
elements of A.

The key feature of the analysis above is that it breaks the
loop apart along a different dimension from the one used by
an analysis in terms of do-while. There are two principle advan-
tages to looking at a loop in this new way. First, the loop is
broken up into pieces which correspond to easily understood
stereotyped fragments of looping behavior. Second, the way
the pieces are combined is logically equivalent to composition,
which makes it easy to understand.
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In order to make the idea that the fragments of the loop are
composed together precise, the notion of a temporal sequence
of values has been developed jointly by H. Shrobe [25] and
the author [28]. Given a program, such as loop, which is
repetitively executed, it can be useful to talk about the
sequence of states in which some part of the program is exe-
cuted, and about the sequences of values available in those
states. For example, consider the statement “z=z+A(1)”” in the
loop in Fig. 2. This statement is executed in a sequence of
states. There are sequences of values of 1 and z which are
available in those states. These sequences are referred to as
temporal sequences of values. The insight is the realization
that, logically, a temporal sequence of values can be treated
in the same way as any aggregate data object. The concept of
lazy evaluation [5], [8] uses the same insight going in the
other direction. If an aggregate data object (such as sequence
of numbers) is desired, then it can be created temporally,
rather than all at once, so that each piece of it is not actually
created until it is needed.

Looking back at Fig. 3, fragment A produces a temporal
sequence of values of 1. The elements of this sequence are
tested by fragment B. Logically, the key relationship is that A
creates data used by B. A is composed with B by passing this
data from A to B. Viewed abstractly, it makes no difference
whether these data are put into a vector which is passed all at
once to B, or, as in the example, A and B are intermingled so
that B can use each individual value created by A as soon as it
is produced. Intermingling A and B is just an efficient way of
implementing the data flow from A to B.

The key property of composition which makes it an easy
process to understand is that the only interaction between two
things which are composed together is that one passes data to
the other. They have no other effect on each other. The loop
fragments above have this vital property. Fragment A will
produce a sequence of values of 1 counting up from one no
matter what is happening in the rest of the loop. Fragment B
tests the values of 1 it sees no matter what else is going on in
the loop. As a result, each of the fragments can be understood
completely in isolation from whatever loop they are being
used in.

III. THE Loop PLAN BUILDING METHODS

This section is divided into four subsections which describe
four PBM’s which create loop fragments and combine them
together. Each subsection first describes how a loop can be
built up in accordance with the PBM being described. It then
discusses how this process can be reversed in order to analyze
a loop in terms of the PBM. Section VI describes a system
which can perform this analysis automatically. The remainder
of each subsection discusses how the PBM leads to an under-
standing of a loop.

A. The Augmentation PBM

Given a loop, it may be extended to perform additional cal-
culations by augmenting it by adding an additional fragment
into it. Abstractly, the augmentation is composed with the
loop by putting it into the loop so that it can use temporal
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a loop an augmentation
A: X=0;
Z2=0; X = X+Z+A(I);
B:
DO I=1 TO N;
C:
IF A(I)>0 THEN DO;
D:
Z = Z+A(1);
E:
END;
F:
END;

the result of adding the augmentation to the loop at points
A and D

X=0;
Z=0;
DO I=1 TO N;
IF A(1)>0 THEN DO;
X = X+Z*A(1);
Z = Z+A(D);
END;
END;
Fig. 4. An example of an augmentation.

sequences of values generated by the loop. An augmentation
consists of two parts: a body and an initialization. The body
is a piece of code with one entry point and one exit point
which is placed somewhere in the control flow of the loop.
In Fig. 4 the augmentation body “x=Xx+z*A(1)”’ may be added
to the loop (the same loop as in Fig. 2) at positions ¢, D, E, or
F. The augmentation body may use data values from outside
the loop (for example, A). It may use values computed by the
rest of the loop (for example, z and 1). It may use values com-
puted by earlier executions of itself (for example, x). It may
provide values which will be used outside of the loop (for
example, x). However, it is not allowed to affect any values
which are used by the rest of the loop (for example, 1, z, or A).

The augmentation initialization is a piece of code which is
placed somewhere before the loop. In Fig. 4 the augmentation
initialization “x=0"’ may be put at positions A or B. The aug-
mentation initialization provides values which are used by the
augmentation body. It may not affect any values which are
used by the rest of the loop. When an augmentation body uses
values computed by earlier executions of itself, then an aug-
mentation initialization will usually provide the values to be
used by the first execution of the augmentation body, as in
the example. .

When an augmentation is added to a loop, a more complex
loop results. It is then possible to add another augmentation
to the new loop. This second augmentation can use values
computed by the first augmentation. In Fig. 4 the augmenta-
tion is being added to a loop which already has an augmenta-
tion (i.e., fragment c in Fig. 3).

The key restriction that there may be no data flow from an
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augmentation to the rest of the loop is the basis for the logical
properties of the augmentation PBM. This restriction can also
be used to locate augmentations when a loop is being analyzed.
Once the data flow in a loop has been determined, augmenta-
tion bodies can be recognized by locating minimal subsegments
of the code for the loop which do not have data flow going to
other parts of the loop. The corresponding augmentation
initializations can be recognized by seeing what parts of the
initialization of the loop have data flow to the augmentation
body. Consider the loop at the bottom of Fig. 4. The line
“x=X+Z+A(I1)”’ can be identified as a subsection of the loop
which does not have any data flow to other parts of the loop;
the line “x=0"’ can then be identified as the corresponding
augmentation initialization because it is the only part of the
initialization for the loop which has data flow to the augmen-
tation body. After this augmentation has been removed from
the loop, a similar analysis reveals that ““z=0; z=z+A(1);” is also
an augmentation.

Suppose a complex loop is analyzed by the augmentation
PBM into a simpler loop, and an augmentation. The complex
loop can then be understood in basically the same way as a
composition. The simpler loop can be understood in isolation
by recursively analyzing it using the methods being described
here. Continued decomposition of the simpler loop will even-
tually lead to a basic loop which can be understood as dis-
cussed in Section III-C. The fact that there is no data flow
from the augmentation to the simpler loop means that the
addition of the augmentation does not alter the behavior of
the simpler loop. The complex loop does everything that the
simpler loop does. For example, it terminates if and when the
simpler loop terminates.

What the augmentation does can also be understood in isola-
tion. The augmentation can be looked at as taking temporal
sequences of inputs (one for each variable it uses) and produc-
ing temporal sequences of outputs (one for each variable it
assigns to). It is easy to develop recurrence relations which
specify its behavior. For example, consider the augmentation
being added in Fig. 4 ““X=0; Xx=Xx+2*A(1);”. It is easy to develop
the recurrence relation “Xo=0 A X;j+,=X;+Z;*A(1)” which de-
scribes its behavior. Further, it is easy to recognize that this
recurrence relation computes a sum and therefore *“X;,,=
Zi=o,NZi*A(1}).” The experiment in Section V shows that
89 percent of the augmentations in the loops studied could be
recognized as either a product, a sum, a count, a max, a min,
or as a trivial recurrence relation in which prior values of x; do
not appear (for example, “X;=2+Z;”).

In order to put the understandings of the simpler loop and
the augmentation together to gain a complete understanding
of what the complex loop does, it is necessary to consider
where the augmentation body is placed in the simpler loop in
order to know what temporal sequences of values it receives.
In the example in Fig. 4 it is necessary to know what values of
I are received by the augmentation body in order to know
which elements of A are selected. If the augmentation is
placed at points c or F, it will receive all the first N ele-
ments of A. Ifit is placed at points D or E, it will receive only
the positive members of the first N elements of A.

Once the simpler loop, the augmentation, and the temporal
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aloop a filter
Z=0;
B:
DO I=1 TO N;
C:

IF A(1)<100 THEN

IF A(I)>0 THEN DO;
D:
Z = Z+A(D;
E:
END;
F:
END;

the result of adding the filter to the loop at point E

Z=0;
DO I=1 TO N;
IF A(I)>0 THEN DO;
Z = Z+A(D);
IF A(I1)<100 THEN;
END;
END;
Fig. 5. An example of a filter.

sequences of values it receives have been understood, the com-
plex loop can be understood as simply the composition of
what the simpler loop does, with what the augmentation does
with the particular sequences of values it receives.

B. The Filtering PBM

The filtering PBM is a special case of the augmentation PBM.
A filter is an augmentation whose body is an if-then-else with
a null then clause and a null else clause. As an augmentation,
a filter does not affect any of the values used by the rest of the
loop. The filter takes temporal sequences of values as inputs
and produces restricted sequences of values as outputs. These
restricted sequences of values can be used by putting augmen-
tation bodies into the then clause and the else clause of the
filter. The purpose of the filter is to create the execution
environments where these restricted sequences are available.
Fig. 5 gives an example of a filter being added to a loop.
Filtering can be recognized as a special case during the process
of recognizing augmentations. All augmentations which are
if-then-elses containing only a predicate are filters.

Suppose that a complex loop is analyzed by the filtering
PBM into a simpler loop and a filter. The simpler loop can be
understood in isolation. The filter can also be understood in
isolation as restricting temporal sequences of values. The filter
will be executed in some sequence of computation states. It
sets up control environments which are executed in subsets of
those states. In so doing, it restricts all of the temporal
sequences of values available. As viewed from the then clause,
the filter being added in Fig. S restricts the sequence of com-
putation states, and hence the available temporal sequences of
values, to those which correspond to values of A(1) which are
less than 100.

As with an augmentation, in order to gain a complete under-
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standing of what a filter does, it is necessary to know where in
the simpler loop the filter is placed. It is necessary to know
what the available sequences of values are, in order to know
what they are restricted to. In Fig. 5, if the filter is put at
positions C or F, then the sequence of values of I is restricted
to those corresponding to members of the first N elements of
A which are less than 100. If the filter is put at positions D or
E, then the sequence of values of 1 is restricted to those corre-
sponding to members of the first N elements of A which are
greater than zero and less than 100. The behavior of the com-
plex loop can be understood as the composition of the behav-
iors of the simpler loop and the filter.

C. The Basic Loop PBM

Once all of the augmentations and filters have been removed
from a loop, a residual loop remains. This residue corresponds
to what T. Pratt [19] refers to as the “control computation”
for the loop. A basic loop can be characterized by the fact
that all of the computation in the body of the loop can poten-
tially affect the termination of the loop. In his article, Pratt
calls for an improvement in the design of loop control struc-
tures. His basic observation is that a small number of common
control computations appear in a large percentage of loops
which are written, and that unfortunately, the looping con-
structs currently in use largely obscure rather than highlight
this fact. He suggests that the parts of the control computa-
tion, including any initialization, should be grouped together,
rather than spread through a loop, and that stereotyped con-
trol computations should. be clearly identified as such. In the
analysis procedure, the basic loop PBM fills just this function.

The residual loop is analyzed as having three parts (an initial-
ization, a test, and a body) by the basic loop PBM. This is
essentially the same as the do-while construct described above.
The only difference is that the initialization is closely asso-
ciated with the loop.

The basic loop PBM has the same basic defect that do-while
has. It can be arbitrarily difficult to determine what a basic
loop does given the behavior of its parts. However, it is
possible to recognize special cases such as the basic loop
“DO I=N TO M; END;”. The experiment in Section V indicates
that in the loops studied, most of the complexity of most
loops is embodied in their augmentations and filters rather
than in their basic loops. More than 90 percent of the time,
the basic loop which remains after PBM analysis merely enu-
merates a simple sequence of values and can easily be recog-
nized as a special case.

D. The Interleaving PBM

In the interleaving PBM, two loops (A and B) are inter-
mingled so that they are executed in synchrony. They are put
together in such a way that there is no data flow from parts of
loop A to parts of loop B or vice versa. Fig. 6 gives an example
of two loops being interleaved. The figure shows one of the
many different ways in which the two loops could have been
interleaved. Another loop can be interleaved with the loop
which results from interleaving two loops.

Interleaving can be recognized as follows. The primary clue
is the existence of two separate exit tests. Given that, inter-
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loop A loop B
DO I=1 TO 10; X =1.0;
END; LOOP: X = (X+Z/X)/2.0;

IF ABS(X*X-Z)<.00001
THEN GOTO EXIT;
GOTO LOOP;
EXIT: ...

an interleaving of the two loops

X=1.0;
DO I=1 TO 10;

X = (X+Z/X)/2.0;

IF ABS(X*X-Z)<.00001 THEN GOTO EXIT;
END;

EXIT: ...
Fig. 6. An example of interleaving.

leaving can be detected by looking at the data flow in order
to see whether two separate bodies and initializations can be
found. This distinguishes interleaved loops from basic loops
which have compound exit tests.

The two loops (A and B) can be understood separately. Since
there is no data flow between them, their effect on each other
is limited. Their only interaction is that when one terminates,
the other is forced to terminate. Thus if either of the loops
can be shown to terminate, then the combination can be
shown to terminate. This property of interleaving leads to one
of its primary uses: guaranteeing that a loop will terminate.
This is the purpose of the interleaving in Fig. 6.

The behavior of the interleaved loop is the union of every-
thing that the subloop which terminates first does, with a
subset of what the other subloop does. The interleaved loop
in the example terminates after at most 10 iterations. Further,
it can be seen that after it terminates “I=11 V ABS(X*X-2)<
00001.”

A common error associated with using interleaving follows

from the misconception that interleaving guarantees termina-

tion without affecting the primary loop in any other way. If
this were the case then it would be possible to say that after
the interleaved loop in the example terminates “I<11 A
ABS(X*X -2)<.00001.” This misconception would lead a pro-
grammer to write the rest of his program assuming that the
loop always computed the square root of z to within .00001.
However, this is not true. The interleaved loop either com-
putes the square root, or just gives up trying.

IV. UsiNnG PBM ANALYSIS TO GUIDE VERIFICATION

The purpose of this section is to show how PBM analysis
reveals the logical structure of a program and to show how this
can be used to guide a proof of correctness. In addition, this
method for verifying a loop is contrasted with the standard
approach of using a single loop invariant.

Consider the program in Fig. 7 and how it would be verified
by using a single loop invariant as originally introduced by
Floyd and Hoare [4], [10]. Assertions are passed over the
body of the loop in order to develop a statement of what the
body does. Then an appropriate loop invariant is developed.
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X=0;
Y=0;
L=11;
DO K=1,10;
IF C(K)>0 THEN DO;
X = X+A(K);
Y = Y+A(K)*A(L);
END;
L=L+1;
END;
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the program is claimed to compute

X=z {iiie{l’ ..
Y=£{jlie{y,..

.,10} AC@)>0}AMD A
.,10} A C@)>0} AG@)*A(i+10)

assertions summarizing the actions of the loop body
L=L+1 A (C(K")>0 = (X=X"+A(K) A Y=Y +A(K')*A(L)) A
(C(K)<0 = (X=X’ A Y=Y")) A K=K’+1

a loop invariant
0<K<11 A L=K+10 A

x=2{ijie{1,...,K}Ac@>0}Al) A

Y=Z{jjie{1,.

.. . K}A C@>0} AW*A(+10)

Fig. 7. Steps in a proof by the standard single invariant method.

the sequence of values it produces

the above sequences are restricted to the elements

which correspond with positive values of c(k)

PBM section of
the program
basic DO K=1,10; 1<i<10
loop END; K;=i
aug. L=11; 1<i<10
L =L+1; Li=i+10
filter IF C(X)>0 THEN
aug. Xx=0; 1<i<10
X = X+A(K);
aug. Y=0; 1<i<10

Y = Y+A(K)*A(L);

Yiez{jlje{1,...

XiZ{jlje{1,...,i}Ac@G)>0}A0)

Li} A C(j)>0} AGD*A(j+10)

Fig. 8. Steps in a proof based on PBM analysis.

Finally, the statement of what the body does is used to prove
the invariance of the loop invariant, and the loop invariant is
used to verify the specifications of the loop.

One of the most difficult steps in a proof of this form is the
determination of an appropriate loop invariant. Considerable
research has been done on ways to automatically develop
invariants. Much of this work centers around heuristic meth-
ods which can be used to guide a search for an invariant
[14], [29]. Some of it is oriented toward directly deriving
invariants for specific classes of loops [2], [3], [17]. The
work of Basu and Misra [2], [3] is particularly interesting.
They analyze the mathematical properties of a loop in order
to directly derive an appropriate loop invariant for certain
classes of loops.

Fig. 8 shows how the program in Fig. 7 would be analyzed

by PBM’s, and how this leads to a proof of correctness. The
program is divided into five parts: a basic loop which enumer-
ates the integers from 1 to 10 in K, an augmentation which
enumerates the integers from 11 to 20 in L, a filter which
restricts these temporal sequences of values by selecting only
those elements which correspond to positive values of c(x),
an augmentation which computes the sum of the indicated ele-
ments of A, and an augmentation which computes the sum of
the products of the indicated elements of A. This decomposi-
tion leads to a style of proof based on composition which is
very different from the proof in Fig. 7. First, five lemmas are
proved. Each lemma summarizes the actions of one of the five
parts of the program. Second, these lemmas are combined to
yield the desired result.

The problem of finding the loop invariant is solved by break-
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ing it up into five pieces. No invariant is needed in order to
verify the program as a whole. Rather, each of the proofs of
the five lemmas requires an invariant. However, each of these
proofs is so simple that it is easy to determine what the invari-
ant should be by the methods of Basu and Misra, if not by
simple recognition. It should be noted that not all programs
can be decomposed by PBM’s as nicely as the one in the exam-
ple. There is no limit to the complexity of the pieces which
result. Therefore, it may be very difficult to determine the
invariant needed to prove one of the lemmas needed. Even in
this situation, the PBM analysis is useful because it determines
the parts of the invariant as a whole which are easy and sepa-
rates them from the parts which are difficult. PBM analysis
does not claim to be a uniform procedure which will deter-
mine the invariant for any loop; rather, it claims to greatly
simplify the problems involved with finding most of the invari-
ant for most loops (see Section V).

The fundamental difference between the form of the proof
engendered by PBM analysis and the form of the proof result-
ing from the single invariant method becomes apparent when
the proof is used for something other than giving a yes/no
answer to the question of whether or not the program is cor-
rect. For example, suppose that the program were incorrect
and that therefore the proof failed. The PBM proof is broken
up into a sequence of steps which are directly linked to parts
of the program. If the failure of the proof can be localized to
one of the steps of the proof, then the bug in the program can
be localized to the corresponding part of the program. The
failure of a proof based on a single loop invariant does not
lend itself to this kind of analysis.

The same kind of difference appears in a variety of other
tasks. For example, the PBM proof can be used to help
explain how the program works because it indicates what parts
of the program contribute to what parts of the specifications.
The analysis according to PBM’s, and the resulting proof of
correctness, are specifically designed to reveal the logical struc-
ture of a program.

V. AN EXPERIMENT

This section addresses the following two questions. Given
that it is possible to write loops which cannot be directly
analyzed in terms of the four loop PBM’s discussed above, how
often is this a problem? Given that there is no limit to the
complexity of the pieces which result from the analysis of a
loop by PBM’s, how often are the pieces simple?

In order to investigate these questions, an experiment was
performed. Twenty percent of the 220 programs in the IBM
SSP [12] were chosen at random and analyzed in terms of
PBM’s by hand. The SSP was chosen because it is a large
corpus of reasonably written programs.

The 44 programs chosen contained 164 loops. The inter-
leaving PBM was used 23 times. This yields a total of 187
underlying loops. These were analyzed as being built up out
of 187 basic loops, 273 augmentations, and 3 filters.

It was possible to analyze all of the loops with the PBM’s
discussed in Section III without having to transform them in
any way. Configurations which cannot be directly analyzed
(such as a loop with more than one entry point) did not occur
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in these loops. The only difficulty was that one loop had
multiple level error exits which branched outside of the loop
from inside an inner loop. In order to analyze the error exits
in terms of the PBM’s above, they had to be looked at as being
explicit exits from the inner loop and from the outer loop.
This may or may not be the best way to look at them.

It turned out that nearly 90 percent of the time, the pieces
which resulted from PBM analysis were very simple. Of the
187 underlying loops, 166 (88 percent) were semantically of
the form “DPO 1= TO M BY N;” though some of them were
not syntactically of that form. Of the 273 augmentations, 243
(89 percent) were easy to recognize as either a product, a sum,
a max, a min, a count, or a trivial augmentation whose recur-
rence relation did not reference prior values of the variable
being defined (such as “x;=2+2;”"). All three filters were simple
comparisons with zero.

It is interesting to note that because of the interleaving PBM,
162 (99 percent) of the 164 loops could be shown to terminate
based simply on the fact that “DO 1=L TO M BY N;” termi-
nates. Although, there were 21 underlying loops which were
not of the form “DO I=L TO M BY N;” interleaving combined
most of these loops with loops which were of that form. Asa
result, all but 2 of the 164 loops examined contained at least
one underlying loop of the form “Dpo 1=L TO M BY N;” and
therefore clearly terminate.

The four loop PBM’s together with five additional PBM’s
for straight-line programs were able to account for all of the
structure in the 44 programs studied, not just the looping
structure. However, there are other ways in which programs
are organized, such as, interrupt processing and recursion.
Extending the set of PBM’s in order to cover a wider class of
programs is an important direction for future research on
PBM’s. For example, [28] shows how the loop PBM’s can be
improved and extended so that they cover recursive as well as
iterative programs.

VI. AN AUTOMATIC ANALYSIS SYSTEM

The author has implemented a system (described fully in
[28]) which automatically analyzes programs in terms of
PBM’. The system operates in two phases. A translation
phase reads in a program and converts it to a language-
independent internal form. An analysis phase then analyzes
the program by looking at the internal form.

The internal form makes the control flow and data flow
explicit independent of the syntactic constructs of any partic-
ular language. The internal form is essentially a graph with
two kinds of arcs. The nodes of the graph correspond to prim-
itive operations such as: plus, times, and less than. One type
of arc specifies the flow of a data object from one node to
another. The other type of arc specifies the flow of control
from one node to another. Constructs which languages use to
implement data flow (such as: variables, assignment, param-
eters, and nesting of expressions) are not present in the
internal form. All information about data flow is contained in
the data flow arcs. Similarly, constructs which languages use
to implement control flow (such as GoTo’s and sequential
placement of statements) are eliminated in favor of the control
flow arcs.
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A translator has been written which converts Fortran [11]
programs, like those in the IBM SSP [12], into the internal
form. C. Rich [21] has written a translator which converts
Lisp [16] programs into the internal form. After this con-
version, the analysis phase of the system works on Lisp pro-
grams just as easily as on Fortran programs.

The translator works by running over the program like an
evaluator, creating control flow arcs, data flow arcs, and nodes
as it goes. The translator has detailed knowledge of the con-
structs which implement data flow and control flow. It does
not have any knowledge of what the primitive functions do
except how many inputs and outputs they have.

The principle difficulty in translation comes from the fact
that the internal form requires that all of the data flow be
explicit. In a program it can be very difficult to determine
what the data flow actually is. One source of trouble is the
use of side effects. The current translator can deal with assign-
ment to variables and to array elements, but assumes that
there are no other side effects.

Predicates which create multiple control flow paths lead
to multiple data flow paths which signify that a given opera-
tion will receive data from one of several different sources
depending on which of several control flow paths is taken.
It is possible for predicates to interact in such a way that not
all control flow paths are accessible. This reduces the number
of possible data flow paths. Unfortunately this is difficult to
detect without knowledge of what the primitive operations
do. The current translator simply makes the pessimistic as-
sumption that all control flow paths are accessible.

Once a program has been translated into the internal form,
it is then analyzed in terms of PBM’s. This is done in several
steps. The first step looks primarily at the control flow arcs
and analyzes the straight-line sections of the program while
merely identifying the loops in it. This is essentially an analy-
sis in terms of basic structured programming constructs as
discussed in Section II. The analysis is done bottom up by
locating minimal configurations which can be grouped together
in accordance with a PBM. Whenever such a configuration is
located, it is grouped together into a single node, and the anal-
ysis continues. This process terminates when the entire pro-
gram is grouped into a single node.

The principle problem which might occur during this process
is an explosion of competing hypotheses which would send the
system into a lengthy search for the correct analysis. However,
due to the fact that only a very small number of PBM’s are
being considered, and that they are all very different from each
other, this problem does not arise. In fact, the system is never
forced to change its mind and undo a grouping it has previously
made.

The first step of analysis can be compared with the system
B. Baker [1]. Her system uses graph theoretic methods in
order to analyze Fortran programs based on their control flow
in terms of basic structured programming constructs. Her sys-
tem then outputs the program in a structured form. GOTO’s
are used in situations where an analysis in terms of the struc-
tured programming constructs is not possible.

After the first step of analysis, which is based largely on
control flow, the system described here performs a second
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step of analysis which looks at the data flow and rearranges
some of the groupings. The major goal of this step is to locate
the initializations for loops and explicitly associate them with
the loops. The initialization of a loop is located by finding
those pieces of code which have data flow to and only to the
loop. This step is necessitated by the fact that the syntax of
Fortran does not require the initialization for a loop to im-
mediately precede the loop. Large parts of the program may
intervene in the flow of control between the initialization and
the rest of a loop.

The third and final analysis step analyzes the loops dis-
covered by the earlier steps according to the four PBM’s: basic
loop, augmentation, filtering, and interleaving. The analysis is
based primarily on data flow connectivity and proceeds as
described in Section III. For example, augmentation bodies
are located by finding minimal subsets of the body of a loop
which do not have data flow to any other part of the loop.
Once an augmentation body is discovered, it is removed from
the loop and the remaining loop is analyzed further.

The structure which results from the three steps of analysis
is essentially a parsing of the program. It shows how the entire
program is built up from simple pieces by means of the PBM’s.

VII. THE RELATIONSHIP BETWEEN PBM’s AND
PROGRAMMING LANGUAGE CONSTRUCTS

The PBM’s which are used in the first step of analysis
(conjunction, composition, conditional, and basic loop) corre-
spond to basic structured programming constructs. If the anal-
ysis system operated on programs written in a language which
required the use of these basic structured programming con-
structs, the first step of analysis would not be necessary.
However, the loop PBM’s (augmentation, filtering, and inter-
leaving) do not correspond to any existing structured program-
ming constructs.

However, the loop PBM’s do embody natural ideas, and
many programming constructs have features in common with
them. For example, there are a variety of constructs which
have the feature that they separate out a basic loop which
enumerates a sequence of values from the rest of the loop
which does something with them. The most common example
of this is the DO statement. It makes a clear syntactic distinc-
tion between the enumeration of a sequence of integers and
their use. However, in most languages, the DO statement does
not correspond semantically to a basic loop because the pro-
grammer is not prohibited from assigning to the Do variable in
the body of the loop. If the DO variable is modified in the
body of a loop then the logical separation between the DO
loop and its body is destroyed. It is no longer true that the
behavior of the basic loop is completely specified by the po
statement itself.

The MAPc function in Lisp [16] is similar to the Do state-
ment except that it enumerates the elements of a list instead
of a sequence of integers. GENERATORS in Alphard [24] and
ITERATORS in CLU [15] extend this concept to the enumera-
tion of elements of arbitrary data types. The MAPCAR func-
tion in Lisp is interesting because as well as enumerating the
elements in a list, it contains a standard augmentation
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“(SETQ X NIL) (SETQ X (APPEND X result))” which forms a
list of the results.

The language APL [18] has several operators which operate
directly on vectors in a fashion very similar to the way PBM’s
operate on temporal sequences of values created by loops. For
example, the index generator function generates a sequence of
integers in a vector. The compression function filters out ele-
ments in a vector based on a bit vector. The reduction opera-
tor is similar to augmentation in that it applies an operator
such as plus or times to the elements of a vector in order to
compute the sum or product of all the elements in the vector.

Current programming languages lack structured looping
notations for multiple augmentations and interleaving. It is
interesting to consider the possibility of extending a language
to add these features. Each structured construct in a language
plays two roles. It provides a tool for the programmer to use
when he is constructing the program in the first place. More
importantly, the use of the construct makes the program more
readable, because it makes the logical structure of the program
more explicit. In this role, it enhances the value of the code
for the program as documentation.

One important aspect of any construct is how it will look
when a program is printed on paper. This is particularly
important in itsrole as documentation. Virtually all structured
constructs are expressed using syntactically nested notations.
An example of a syntactically nested notation is the if-then-
else statement: “IF pred THEN statement]; ELSE statement2;’.
This specifies how pred, statement1, and statement?2 are to be
combined without referring to the internal structure of any of
them. The construct treats them like black boxes. Syntacti-
cally nested constructs have several very nice features. In
particular, they give the program a tree-like structure and pro-
vide a lot of locality. All of the information about how the
pieces will fit together is contained solely in the construct
itself, and each piece can be understood in isolation.

One reason that augmentation, filtering, and interleaving
have not appeared in full form in languages may be the fact
that they do not lend themselves to being expressed in syn-
tactically nested notations. For example, consider augmenta-
tion. Anice syntactically nested construct such as “(AUGMENT
loop augmentation)” will not work because it does not specify
where the augmentation body will be put in the loop. Viewed
more abstractly, it does not specify what temporal sequences
of values the augmentation will receive. The problem is that
the loop cannot be looked at as simply a black box during the
process of augmentation. Using current programming lan-
guages, a programmer specifies where in a loop an augmenta-
tion body should be put, by putting it there. This does an
effective job of specifying the necessary information, but it
does not make the logical structure of the resulting loop
explicit in the code for the program.

Constructs such as Do and MAPCAR make a compromise
between the desire to have a syntactically nested construct,
and the fact that the basic loop to be augmented cannot be
looked at as a black box. With both constructs, the basic
loop, and the place to put the augmentation body, are speci-
fied by the underlying semantics of the construct, and are not
intended to be specified by the programmer. It is not clear
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whether this approach of using conventions to specify the
placement of augmentations could be extended in order to
handle multiple augmentations with a nested construction
which would serve as good documentation.

One way to introduce augmentation and filtering into a pro-
gramming language would be to move up to a more abstract
level which talks directly in terms of temporal sequences of
values. At this level, augmentation and filtering are just com-
position of fragments and therefore can be expressed easily
with syntactically nested constructs. This would lead to a
language which had constructs comparable to the APL opera-
tors described above. This is the approach taken by Kahn and
MacQueen [13]. Their language is capable of expressing a
program directly as a set of coroutines operating on vectors
which may be spread out in time. In order to get the signifi-
cant savings in time and space which result from implementing
augmentations and filters with loops operating on temporal
sequences of values rather than by coroutines or by functions
operating on actual vectors of values, the language would then
have to have a smart complier. The compiler would have to
know how to combine the pieces together into a loop. The
work which has been done on developing a compiler for APL
(see for example, [7]) indicates that this is not an unreason-
able goal.

A different approach to introducing the loop PBM’s into a
programming language could be based on an interactive pro-
gram editing environment. In such an environment, the pro-
grammer could develop a program in a structured way by issu-
ing commands in terms of PBM’s. In response to a command
such as “add this augmentation to that loop at that position”
the editor would modify the loop to include the augmentation.
The programmer would have the added advantage of being
able to edit the resulting loop in order to increase its efficiency
by promoting sharing and the like if necessary.

The main problem with this approach is that it does not con-
tribute a construct which aids in documenting the code. How-
ever, the fact that the logical structure of the program cannot
be printed out in a nice tree-like manner does not prevent the
editing system itself from remembering what the logical struc-
ture of the program is. This could be used to the programmer’s
advantage if the editing system itself could use this knowledge
of the structure of the program in order to aid the program-
mer. This is the approach taken by the system described in
the next section.

VIII. A PROGRAMMER’S APPRENTICE

The PBM’s discussed in this paper were developed in the
context of the design of a system which can assist a person
who is working on a program. Research on this system [20] -
[231, [25], [27], [28], which has been called a programmer’s
apprentice (PA), is being carried out by a group consisting of
C. Rich, H. Shrobe, and the author. This research has its roots
in the work of Hewitt and Smith [9], Goldstein [6], and
Sussman [26] .

The PA is intended to be midway between an improved pro-
gramming methodology which facilitates good programming
style, and an automatic programming system. The intention
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is that the PA and a programmer will work together through-
out all phases of the development and maintenance of a pro-
gram. The programmer will do the hard parts of design and
implementation while the PA will act as a junior partner keep-
ing track of all the details and assisting the programmer when-
ever possible.

The PA is designed to perform a variety of tasks. Underlying
all of these tasks is the ability to understand the program
which is being worked on in a way which allows it to effec-
tively communicate with the programmer about the program.
One of the primary roles of the PA is to serve as continuing
in-depth documentation for the program. It can describe the
structure of the program and answer questions about it. The
PA can aid in verifying a program. As part of understanding a
program, the PA knows why it works. This is the backbone of
a proof of correctness. The PA can aid in debugging a pro-
gram. While the program is being developed, the PA is devel-
oping an understanding of why it works. The PA detects bugs
in the program by detecting inconsistencies in this understand-
ing. It can then aid in localizing the bug by using its under-
standing of what parts of the program are causing the inconsis-
tency. The PA can help assess the effects of a modification.
Since it knows the logical dependencies in the program, it can
determine what parts of the program can be affected by a pro-
posed change, and can draw some conclusions about these
effects.

The PA is designed so that it has so much explicit informa-
tion about the program being worked on that it can perform
each of the above tasks using only small steps of deduction.
This being the case, the primary effort in designing the PA has
been directed toward determining what kinds of information
it should have about a program, and how it can acquire this
information. The PA has knowledge of the structure of the
data objects used by a program organized in a manner similar
to data abstractions. In addition, it has knowledge of the logi-
cal structure of the program itself. This information is em-
bodied in a plan for the program.

The plan for a program records the basic structure of the
program by specifying the control flow and data flow in the
program. This part of the plan corresponds exactly to the
internal representation for a program discussed in Section VI.
The plan also records the logical structure of the program. It
does this through several mechanisms. The plan is broken up
into a hierarchy of segments and subsegments. Each segment
and subsegment has input/output specifications which describe
its behavior. In addition, the plan is annotated with depen-
dency links which form an outline of a proof of correctness
for each segment. These links specify how the behavior of a
segment is derived from the behavior of its subsegments.

Consider how the PA can perform the tasks described above
given that it can develop a plan for a program. In its role as
documentation, the PA just reports out information stored in
the plan. The dependency links directly record the backbone
of a proof of correctness and can be used to guide verification.
Bugs are detected as contradictions among the dependency
links. Localizing bugs and assessing modifications are both
accomplished by looking at the dependency links in order to
determine what depends on what.
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Looking at the plans for particular programs, it was discov-
ered that plans are built up in stereotyped ways. This obser-
vation led directly to the PBM’s discussed above. Each PBM
specifies a method by which subsegments can be combined
to produce a new segment. It specifies what the resulting data
flow and control flow will be. More importantly, it specifies
what the dependency links will be. It gives a description of
what the behavior of the result will be, and describes how that
behavior is derived from the behavior of the subsegments.

The pivotal activity of the PA is the process of acquiring the
knowledge which is represented by the plan for a program.
PBM’s play an important role in this process. All of the infor-
mation in the plan must be either known to the PA in advance,
supplied by the programmer, or derived by the PA. The PA
knows about the primitive operations, and about a variety of
common data structures and algorithms. The programmer
supplies the specifications and design for the program to be
written. The PA and the programmer cooperate when working
in the areas between these two extremes. The programmer can
write code and, as discussed in Sections III and VI, the PA can
use the PBM’s to analyze the code in order to break it down
into pieces which it already knows about. It can then use the
knowledge associated with each PBM in order to build up a
complete plan. Alternatively, the programmer can talk with
the PA in terms of PBM’s in order to directly specify how to
build up the plan. Given a complete plan, it is easy for the PA
to produce code. The PBM’s are also useful as a vocabulary
which the PA can use when talking about the logical structure
of a program.

As mentioned above, the research on the PA is a three person
project. Rich and Shrobe laid out the basic goals for the PA
and the basic description of what constitutes a plan [21],
[22]. The author outlined a PA system which would operate
in the restricted domain of Fortran programs [27]. Since that
time, research has continued in parallel in three main areas.
H. Shrobe has implemented a prototype reasoning system
which operates in the context of plans for programs [25]. It
is designed to be able to perform the many deductions needed
by the PA, and to aid in deriving the dependency links in the
plan for a program. C. Rich is working on the problem of
how knowledge of common data structures and algorithms
should be represented in the PA, and what things it should
know about a particular programming domain [20]. He is
also investigating how the PA can recognize instances in which
a programmer has used data structures and algorithms it knows
about. The author has concentrated on studying how the logi-
cal structure of a program is built up. This has led to the anal-
ysis method based on PBM’s [28]. The method is important
in the context of the PA because it enables the PA to under-
stand a program by breaking the program up into pieces which
it knows about and then combining its understandings of the
pieces into an understanding of the whole program.

IX. CONCLUSION

The basic idea behind the analysis method presented here is
that a typical loop can be looked at as a composition of stereo-
typed fragments of looping behavior. This point of view
reflects the way many programmers analyze, understand, and
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reason about loops. The PBM’s, and the idea of temporal
sequences of values are important because they make it possi-
ble for an automatic system to analyze, understand, and reason
about loops in this same straightforward way.

PBM’s are a particularly good basis for analyzing a loop
because they break up a loop in a way which makes it easy to
combine understandings of the pieces into an understanding of
the loop as a whole. A PBM analysis can be used to help con-
struct a proof of correctness for a loop because it makes it
easier to determine appropriate loop invariants. More impor-
tantly, it leads to a style of proof which is particularly useful
because it is linked to the program. The PBM analysis reveals
what parts of a loop are contributing to each part of the
behavior of the loop as a whole. The most important applica-
tion of PBM’s is in the PA which is designed to assist a pro-
grammer, based on its ability to understand the program being
worked on. PBM’s play an important role in the process by
which the PA develops an understanding of and reasons about
a program.
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