AL
Iecrsche arrixidal TRV »

= IR~

The Derivation
of Algorithms

5

ISBN 0-13-204108-1

I

Vit o

C. A.R.HOARE SERIES EDITOR

TU/e

BSA

BIBL.TECHHISCHE
" UHIVERSITEIT

1l

. ETHDHOVEY

Programming

Prentice Hall International Series in Computer Science

C. A. R. Hoare, Senes Editor

BACKHOQUSE, R. C., Program Counstrucron and Verification

BACKHOUSE, R. C., Syntax of Programnung Languages: Theory and pracuce

peBAKKER, 1. W., Mathematical Theory of Program Correciness

BARR, M. and WELLS, C., Category Theory for Computing Science .

BEN-ARL M., Principles of Cancurrent and Distributed Programnung P g

BIRD, R. and WADLER, P., Introduction i Funcional Programming ro rammln

BIORNER, D. and JONES, C. B.. Formal Specification and Software Development

BORNAT, R., Programumng from First Pninciples

BUSTARD, D., ELDER, 1. and WELSH. J.. Concurrent Program Structures * - b

CLARK, K. L., and McCABE, F. G., micra-Prolog: Programmung in logic The D erlvatlon OfA lgo rlthms

CROQKES, D., lnireductian to Programmumng m Prolog

DROMEY, R. G., How o Solve it by Computer

BUNCAN, F., Microprocessor Programpung and Software Develapment

ELDER, j., Canstruction of Data Processing Seftware

ELLIOTT,R. J. and HOARE, C. A_R., (eds.). Scientific Applications of
Multiprocessors

GOLDSCHLAGER, L. and LISTER. A.. Camnputer Science: A modern mtroduciton

{2nd edn) s
GORDON, M. J. C.. Programmung Language Theory and its Implementanion A. Kaldewal}
HAYES, L {ed.), Specificanion Case Studies . ; .
HEHNER, E. C. R., The Logic of Progranunmg Eindhoven University of Technology

HENDERSON, P., Functional Pragranmng: Applicaton and finplementaton

HOARE., C. A, R., Commumcating Sequential Processes

HOARE, C. A, R., and JONES, C. B. {(ed.). Essays mt Compunng Science

HOARE,C. A. R.,and SHEPHERDSON, J. C. (eds.). Mathemantcal Logic and
Programmung Languages

HUGHES, J. G., Darabase Technology: A software eugmneering approaeh

INMOS LTD, occam 2 Reference Manual

TACKSON, M. A., Systemt Development

JOHNSTON, H., Learning io Program

JONES, C. B., Systemanc Software Development using VDM (2nd cdn)

JONES, C. B. and SHAW, R. C_F. {eds.), Case Srudies 1 Systematic Software
Development _

JONES, G., Programaung n occam

JONES, G, and GOLDSMITH, M., Programmumng i occam 2

JOSEPH, M., PRASAD, V. R.and NATARAJAN, N., A Multiprocessor Operating
System

KALDEWALL, A, Programmmg: The Dervanion of Algorithms

LEW, A_, Computer Saence: A mathematical introduction

MARTIN, 1. 1., Data Types and Daia Siructires

MEYER, B., lntroducton to the Theory of Progranuning Languages

MEYER, B., Object-orientated Software Construction

MILNER, R., Communucanon and Conctirrency

MORGAN, C., Progranmng from Specifications

PEYTON JONES, S. L., The Implemeniauon of Funchonal Programnung Languages

POMBERGER, G., Software Engineering and Moduln-2

POTTER, B., SINCLAIR, L., TILL, D., An Introducnon to Formal Specificanon and 3

REYNOLDS, J. C., The Craft of Programmung

RYDEHEARD, D. E. AND BURSTALL, R. M., Computunonal Category Theory

SLOMAN, M. and KRAMER, 1., Distributed Systems and Computer Networks

SPIVEY, §. M., The Z Nowanon: A reference mannal

TENNENT, R. D., Principles of Programinung Languages

WATT, D. A., Programmung Languages Conceprs and Paradigmsy

WATT, D A, WICHMANN, B. A, and FINDLAY , W., ADA: Langnage and
methadelogy

WELSH, 1. and ELDER, I., Introduction to Modulu-2

WELSH, J. and ELDER, J., introduction to Pascel (3rd edn)

WELSH, 1., ELDER, J., and BUSTARD, B, Sequential Program Structures .

WELSH, J. and HAY, A., A Model Implememtanion of Standurd Pascal Pl' entice Han

WELSH, J. and McKEAG, M., Struciured Systemn Programaung .
WIKSTROM, A., Funcional Programnung usmg Standard ML ; New York London Toronto Sydney TGE{}’O Smgapore

o

First published 1950 by

Preatice Hall International {UK) Lid
66 Wood Lane End, Hemel Hempstead
Hestfordshire HPZ ARG

A division of

Simon & Schuster International Group

© Prentice Hall Fnternational (UK Lid, 1990

All nights reserved. No part of this publication may be
reproduced, stored in a retrieval system, o transmitted,
in any form, or by any means, electyome, mechanical.
phetocopying, recarding or othenwise, without priar
permission, 10 writing. from the publisher.

For permission within the United States of America
coniact Prentice Hall Inc,, Englewood Cliffs, NJ (07632,

Printed and bound in Great Britan by
Dotesios Printers Limuted, Trowbridge. Wiltshire

Library of Congress Cataloguing-in-Publication Data

Kaldewaii. A. {Annc)
Programmng: the dervation of algorithms/A . Kaldewaij.
p. om. — (Prentice-Hall internationad series in computer

SCIEnCe)

Inctudes bibliographical references and index.

ISBN 0-13-204108-1 : $32.95

1. Electronte digital computers — Programmung. 2. Algorithms.
1. Title, 1. Senes.
QATH.6. K3417 1990
005, 1 —de 20 HI-14158

CiP

British Library Catatogwing 1a Publication Data

Kaldewaij. A. (Annc}
Propramming : the denvistion of ajgorithins. — {Prentice
Hail Infernational series i computer science’,
1. Computer systems. Programming. Algorithms. Design
i. Title
0045, 12028

ISBN 0-13-204108-1

12345 9493929190

Contents

Preface
0 Introduction
1 Predicate Calculus

2 The Guarded Command Language

2.0 Introduction

21 Skip
2.2 Assignment
2.3 Catenation

2.4 Selection

2.5 Repetition

2.6 Constants, Inner Blocks, and Arrays

2.7 Summary
3 Quantifications

4 General Programming Techniques
4.0 Introduction
4.1 Taking conjuncts as invariant
4.2 Replacing constants by vanables
4.3 Strengthemng mmvamants
4.4 Tail invarants .

4.5 Summary

13
13
16
17
20
23
28
38
42

44

51
51
52
57
63
72
80

vi

Contents

Deriving Efficient Programs
5.0 TIntroduction
5.1 Integer division
5.2 Fibonacci

Searching

6.0 Introduction . .
6.1 Linear Search . . .
6.2 Bounded Linear Search
6.3 Binary Search

6.4 Searching by Elimination . .

Segment Problems

7.0 Introduction

7.1 Longest segments |
7.1.0
7.1.1
7.1.2

7.1.3

All zeros . . .

Left-minimal segments .

At most ten zeros,

All elements different

7.2 Shortest segments = .

Slope Search
8.0 Introduction .

8.1 The basic principle .
8.1.0 Searching

8.1.1 Decomposition in a sum of two squares . .

8.1.2 Minimal distance

8.2 Longest and shortest segments .

8.2.0 Longest segments

8.2.1 Shortest segments , . ., . ., .

8.2.2 At least two zeros revisited . . . | .

Mixed Problems

B3
33
83
88

92
92
92
93
98

110

. 110

110
111
115
117
119
122

127
127
127

130

133
136
140
141
144
146

148

10 Array Manipulations
10.0 Introduction = . =
10.1 Array assignments
10.2 Swaps
10.2.0 The Dutch National Flag .
10.2.1 Rotation

11 Sorting

11.0 Introduction

11.1 Quadratic sorting algorithms : o
11.1.0 Insertion Sort ==
11.1.1 Selection Sort
11.1.2 Bubble Sort

11.2 Advanced sorting algonithms =
11.2.0 Quicksort
11.2.1 Mergesort

11.2.2 Heapsort . .

12 Auxiliary Arrays
12.0 At most K zeros

12.1 Largest square under a histogram

12.2 The length of a longest common subsequence

12.3 A shortest segment problem

Index

Contents

vii

152
152
152
159
161
164

170
170
172
172
174
176
178
179
183
187

Preface

Programming is the art of designing efficient alporithms that meet therr specifications.
During the 1980s the art of programming became more and more a discipline of pro-
gramming. Problems that were hard to solve ten years ago are now used as examples
in an introductory programmung course. What happened?

There are two factors by which algorithms may be judged: their correctness (do
they solve the right problem?) and their performance {(how fast do they run, and how
much space do they use?). The classical way of judging the quality of an algorithm is by
tracing execution patterns, by providing test inputs, or by supplying formal proofs. The
process of proving the correctness of an algonthm after it has been designed 15 known
as verification. Verification of algorithms is rather difficult, even for the designer of an
algorithm. Many a programmer regards it as a waste of time and prefers to continue
with another interesting programming problem. This is one of the reasons why formal
methods were largely rejected or neglected by the software community.

As time went by it became obvious that neither tracing nor tesbing can guarantee
the absence of errors. To be sure of the correctness of a program one has to prove that
it meets its specification. This insight led to the development of specification languages
and tools that mught support program verification.

A quite different approach was advocafed and developed by Edsger W. Dijkstra
and others during the 1970s. In thewr approach a program and its correctness proof are
constructed hand in hand, thereby making a posteriori program verification superfiu-
ous. The proof rules (semantics) of the program notation provide the guidelines for the
canstruction of algorithms from specifications. The correctness of a program obtained
in this way is umplicit: following the rules of the game it 15 impossible to construct
an mcorrect algorithm. With the introduction of this methed of programming it afso
became possible to reason about programs in a non-operational way.

Dunng the 1980s W.I.J. Feijen and others refined this methed to what 15 known
as the calculational style of programming: to a farge extent, programs are derived from

X

X Preface

their specification by means of formula manipulation. The calculations that lead to the
algorithm are carried out in small steps, so that each individual step 15 easily verified.
In this way the design decisions become manifest. Such decisions are based on several
considerations, such as effictency, sumplicity and symmetry. This method does not only
help us m finding a solution, but it can also yield new solutions that are often quite
surprising. Program derivation 1s not mechamical; it is a challenging activity and it
requires creativity. This way of programming shows where creativity comes in. It is
this method that is explamed and exemplified 1n this textboolk.

As a vehicle for the description of algorithims we use the guarded command lan-
guage. 1t has the simplicity needed for educational reasons and it has the expressiveness
needed for the description of algorithms. Procedures and recursion are not included:
the modest constructs of the gnarded command language provide more than enough
latitude for an introduction to programining.

How to use this book

'The material of this textbook can be presented in a one-year course. Such a course may
be organized as follows: each week a two-hour lecture in which the theory is explained
and exemplified and a three-hour training session in which exercises are solved in small
groups. This is the way in winch I present the material to first-year computing science
students at the Eindhoven University of Technology. Each week one exercise is marked
as a home-work assignment. That exercise has to be worked out with great precision.
The same matenal has been used in a third-year course.

The only prerequisite is an introductory course in Pascal, just enough to give stu-
dents some idea about programs and about program execution.

The pace of lecturing should be leisurely. It takes time to get used to the notation
and to get used to the mathematical rigor that is needed. The exercises play a funda-

mental role: you can only understand and appreciate the strength and beauty of the
method by using it,

A Teacher’s Manual (including answers to exercises) is available from the publishers
for adopters of this book.

Overview

In the first chapters, we mtroduce the predicate calcufus and the guarded command
language. Since this book is about programming and not about semantics, the pre-
sentation of the theory of predicates is kept as simple as possible. Fach construct of
the guarded command language 15 introduced together with its accompanying proof
rule. These chapters form the basis for the development of programs. Many exercises

have been inctuded to help the reader gam familiarity with the notations and tie proof
rules.

Chapter 3 introduces quantifications, which are used in specifications and for which

Preface xi

the manipulation rules are presented that are needed in program derivations,

In Chapter 4, we present the general programming techniques that underlie the
more specific techniques presented in the chapters that follow. Chapter 5 discusses
efficiency and presents two examples of efficient algorithms. This chapter gives the
teacher the opportunity to show how one can reason about such programs without
operational arguments.

In Chapters 6, 7, and 8 the general programming techniques of Chapter 4 are ap-
plied to more specific classes of problems. Chapter 6 addresses searching paradigms:
the Linear Search, the Bounded Linear Search, the Binary Search, and Searching by
Elimination are presented. In Chapter 7 segment problems are discussed, which pro-
vide an excellent training in the calculus needed for program derivation. Chapter 8
deals with two-dimensional searches and applies the Slope Search technique to segment
problems. These chapters are followed by a set of mixed programming problems.

The final chapters deal with array operations. The proof rule for the array assign-
ment is introduced and applied to various problems. In Chapter 12 the introduction of
auxiliary arrays is discussed and exemplified by some more complicated programming
problems.

Bibliography

The proof format used in this book was invented by W.H.J. Feijen. Much of the nota-
tion, such as the square brackets for universal quantification over a state space, is due
to E-W. Dijkstra. Many of the examples and many exercises occur also in A Method
of Programming by Edsger W. Dijkstra and W.H.J. Feijen, Addison Wesley, 1988.
Another source is The Science of Programmang by David Gries, Springer-Verlag New
York Inc., 1981. For mnstance, the exercise called “Welfare Crook’ is an example from
this book. Both books are recommended.

Searching by Elimination was invented by Berry Schoeninakers. Some of the exer-
cises have been composed by Jan L.A. van de Snepscheut.

Two other books have to be mentioned. My first contact with the science of pro-
gramming was A Diseipline of Programmung by Edsger W. Dijkstra, Prentice-Hall,
1976. You will find it a pleasure to read it after yon have studied this textbook. For
those interested in the theory of predicate transformers, 1 recommend Predicate Cal-
culus and Program Semantics by Edsger W. Dijkstra and Carel S. Scholten, Springer-
Verlag New York Ine., 1990.

Acknowledgements

It 15 a pleasure to express my gratitude to Wim Feijen, who spent so much time teach-
ing me all he knows about programming. This book would not have been written
without him.

The Eindhoven Algorithm Club, in particufar Lex Bijlsma, Victor Dielissen, Joop

xii Preface

van den Eijnde, Wim Nuij and Berry Schoenmakers, is gratefully acknowledged for
pointing cut errors and obscunibies in earlier versions.

My thanks go to all those colleagues and students who made comments on parts
of this book. I want to mention W.H.J. Feijen, Ria van Ouwerkerk, Martin Rem, Rob
Nederpelt, Asia van de Mortel, and Tom Verhoeff,

The ATAC (Austin Tuesday Afternoon Club), m particular Edsger W. Dijkstra, is
acknowledged for comments on the first part of this book.

Finally, my special thanks go to Rob Hoogerwoord who carefully studied the final
draft of this text, and who suggested many methodological improvements,

Eindhoven, September 1990
Anne Kaldewaij

Chapter 0

Introduction

" There are many different views on programming. A common view is that a program

is just a kind of recipe that explains what steps have to be performed to achieve a
certain goal. Such a program is often presented in an operational way: ‘first do this,
then apply that’ and ‘perform the following N times’. This approach can be found n
many textbooks on programming. Often such fextbooks treat a specific programming
[anguage, such as FORTRAN-77, COBOL or MODULA-2, and usually those books
only differ 1n the language that is used.

In this book we present a completely different approach. A program together with
its specification is viewed as a theorem. The theorem expresses that the program
satisfies the specification. Hence, all programs require proofs (as theorems do). We
shall derive programs according to their specifications in a constructive way, such that
program development and correctness proof go hand in hand.

As an example, we consider the following Pascal program.

program masimum {(input,output);
var z,y : integer;
begin
read{z);
read(y);
if £ < y then &= y;
write{z}
end.
Program vanables define a so-called state space. Vanables z and ¥ mntroduced in the
second line of this program define state space Z x Z, where Z denotes the set of

integers. The coordinates of this state space correspond to the variables, the first one
to z and the second ene to y. Elements of a state space are called states. Typrcal states

1

2 Intreduction

are {1,2) and {0, —5}. Sets of states, i.e. subsets of the state space, are characterized
by predicates (boolean functions), suichasz > yandz >0 A y > 0.

When values A and B are supplied as input to the program above, execution of
read(z); read{y) establishes z = A A y = B, or, phrased differently, leads to state
{A, B). Execution of

ifz<ythenz:i=y

establishes £ = AmaxB, the maximum of A and B. Finally, execution of write(z)
will print the value of z, i.e. Amax B, at some output device.

The heart of the program is the selection statement;
fz<ythenzi=1y
The relation between

r=AAy=8,
if s <ythen z:=y, and
z = AmaxB

is denoted as
{z=AAy=B}ifr<ythenz:=y {z= AmaxB}
The operational interpretation of this triple is

Execution of 'if = < y then x:=y' starting in a state satisfying
x=A A y =D terminates in a state satisfying z == AmaxB.

Predicate = A A y = B 1s called the pre-condition and predicate = Amax B is
called the post-condition of this statement. How the pre-condition (in particular, the
initial state) has been established is not relevant. In this book we will not be concerned
with input or output, but we focus our attention on the design of the algorithm that
expresses the computation of the output in terms of the input.

We will use Edsger W. Dijkstra’s guarded command langnage to denote our pro-
grams. This language 15 quite modest but sufficiently rich to represent sequential
algorithms in a succinct and elegant way., The language is not a main subject of the
course, it is only used to represent programs. In the guarded commands notation the
program presented above is denoted as

Intreduction 3

[var =, ¥ : int; ,
{z=AAy=1D8}
fe<y mz=yfle>y — skipfi
{z = AmaxB}

I

Specifications have the same shape as programs, for instance, a possible specification
for the program above 15

[var =, ¥ : int;
{r=AAy=HB}
NATITMUm
{z = AmaxB}

B

in which mazimum is the name of the program we are looking for.

In general, a specification consists of the definition of a state space {a set of program
variables}, a pre-condition and a post-condition. Program 5 satisfies a specification if
all executions of S starting in a state satisfying the pre-condition terminate in a state
satisfying the post-condition.

The fact that program S satisfies a specification with pre-condition P and post-
condition @ is denoted as

{r} s{q}

The guarded command language will be wtroduced in such a way that {P} 5 {@Q} can
be inferred from the structure of S, For each construct S an inference rule is presented
which is based on an operational interpretation of S. However, as soon as the rules
have been defined, the operational interpretation will not be used any more.

Thus, before we can start with the main subject of tius bock, i.e. programming, we
have to define the program notation and the rules of the game. The predicate calcufus
needed for this 1s the topic of the next chapter.

Any notation used in this book is introduced when it 15 needed. One convention
is mentioned here: for function application we use a dot, so instead of F(z) we write
F.z . Function application 1s lefi-binding: f.z.y should be interpreted as (f.z).y

Chapter 1

Predicate Calculus

In programming, predicate logic is used as a caleuius, as opposed to its use in other
disciplines where jogic plays a more static rofe. This chapter 15 not a short introduction
to fogic, but a presentation of a (rather modest) notation and set of rules that will be
used 1n the subsequent chapters.

A predicate is a boolean function: for set X, function P: X — {false, true} is
called a predicate on X. In our applications set X will be a state space defined by
a set of program variables. Each program variable is of a certain type and X is the
Cartesian product of these types. The coordinates of X are identified by the names
of the program variables. For mstance, z and y of type infeger define state space
X = Z x Z. Let the first coordinate correspond to z and let the second coordinate
correspond to y. Typical predicates on X arex > yand o = 2 A ¥ = 3. The latfer
has value true in point (2,3} and value false in all other points of the state space.

For cach state space the (constant) predicate that is true in each point of that space
is also denoted by true. Similarly, false denotes the predicate that is false in all points

of the state space. The following operators are defined on the set of predicates on a
stale space.

A {conjunction}
vV (disjunction)

= (equivalence)
= (implication)

- {negation}

These operators are defined as follows;

P A Q 15 the predicate that is true in each pomt where P 15 true and Q is true;
it is false 1n all other points.

Predicate Calcufus 5

PV Q) is the predicate that is {alse in each point where P 1s false and ¢ is false;
it 1s true in all other points.

P = () is the predicate that is true in each point where P and) bave the same
value; it is faise in all other points.

F = () 15 the predicate that 15 false 1n each point where P is true and ¢ 1s false;
it is true in all other points.

-P is the predicate that is true in each point where P is false; it s false in each
point where P 1s true.

For P = we may also write §J <= P ('Q follows from P'). To avoid parentheses
in expressions we introduce the following priorities. Negation has the highest priority.
From the binary operators, conjunction and disjunction have the highest priority fol-
lowed by implication and then equivalence. For instance, P = Q = -P Vv should
beread as (P= @) = ((-P)v Q).

We are often interested in predicates that hold everywhere, t.e., predicates that
are true at each point of the state space. Examples of such predicates are Q = @,
(z+1¥ =a? + 2z + 1, and true. The propoesition ‘P is true for all states’ is denated
as

[P

which is pronounced as ‘for all states P’ or ‘P, for all states’.
For instance, [¢ 2 1 = = = 0] and |true| hold, whereas |z > 0 = = > 1] does not hold,
sipce

020A 03> 1)

Note that [P = (J| expresses that predicates P and @ denote the same function.
In particular, Q may be substituted for . This substitution rule {known as Leibniz’s
Rule) may be formulated as follows:

If [P =@} then any occurrence of P in expression R may be replaced by
Q) without changing the value of R.

We assume that the reader is familiar with most of the properties of the operators
introduced above. The following list shows some of these properties. This list is
no} exhaustive and not all of the listed properties will be used frequently. Their use
will become apparent in the chapters that follow. In the following P, @, and R are
predicates on the same state space,

6 Predicate Calculus

Pl
Pl

iempotence: {PAP
[PV F

W

commutativity: [PAQ = QA Pl

(07

[PVQ = QV P

(P=q)=

(PAQAR
[(PVQ)VER
(P=q) =

associativity:

(@ = P)]

= PA(QAR)
= Pv(QVR)
R} = (P = (Q = R))]

I

These associativity properties permit us to omit parentheses.

distributivity: [PA{QV R)
[Pv(Q AR

= (PAQ)V(PAR)
= (PV@)A(PVR)

[PV(Q=R)= PVQ = FVR]

absorption: [PA(PVRY = P|
(PV(PAR) = P|
false-true rules: {P Atrue = P [P Afalse = false]
[PV false = P [PV true = true|
De Morgan: [H(PAQ) = -PVv-d [~{PVQ) = -PA-Q|
negation: [--P = P] [PV =P = true|
~P=q@)= -P = Q] [PA-P = false|
implication: [P=Q = ~PvQ] [false = P|
[P=>0Q = PAQ = P IP = true|
[P=2Q = PVvQ = Q)] ftrue=> P = P|
[P=Pvg [P = false = —P|
[PAQ = P
equivalence: |P = Pj
[P = P = true|

WP = P = false]

50
P

Predicate Caleulus

7

A theorem of the form [P = @] is often proved in a number of steps, for instance,
by showing [P = A}, {A = B, and [B = @), for certain predicates A and B. To

avoid writing down 4 and B twice, we use the following notation for such a proof:

P

= {hint why [P = A4}}
A

= { hint why jA = B}
Fii

= {hint why |{B = @]}
Q

Similarly [P = Q] may be proved by, for instance, [P = 4l [4 = B}, and {B = Q|.

We will denote such a proof as follows:

F

= {hint why [P = A}}
A

= {hint why [4 = B}
B

= {hint why [B = @]}
Q

As an example we show [P A (=P Vv @) & P AQG], a so-called ‘complement rule”:

PA(~PVQ)
{ distributivity of A over v }
(PA-PYV(PAQ)

= { negation ruie }
false V{P A Q)

= { false-true rule }

PAQ

Hi

When [P = (}] holds then P is called stronger than @ and ¢ is called weaker than
P. For example, x > 2 is stronger than r > 1 and 2% > 0 is weaker than z > 0.
The weakest predicate is predicate true, since {P =» true] for all P, and the strongest

predicate is predicate false, since [false = P} for all P.

Equation ¥ : [Y = P| has P as weakest solution, since

8 Predicate Calculus

(i) [P = P, 1.e., P 15 a solution, and

(ii) for any solution ¥, [V = P|, r.e., P is weaker than Y

Note that faise 15 the strongest solution of this equation. Similazly, equation
Y: [P = V| has P as its strongest solution, and true as its weakest solution.

We use predicates thai are expressions in the program variables of the state space.
An important operation on expressions is subsiitufion. Substitution of expression [
for variable = 1n expression (7 is denoted as

Qo= F)

to be pronounced as ‘Q) in which is replaced by E° Mulliple substitution of and y

by E and F, respectively, is denot_gduas—’ﬁ\
- e) i\/o \)

Qlx,y:=E,F) (' r’Y}LLL}J—m

~—___e”

Substitution has a higher priority than all other operators, for instance,

[P = Q(z:=)] should be read as (P = (Q(z:= E))]. Substitution distributes over
all other operators.

Examples

(#*+2xz)(z=a+]) = (:c+i)2+2* (z+1)§
(z 2 y)z=a+1) = z+4+1 > y|
{z+2ty=2)zy=y2) = y+2+z= z|
(z=E}z:=F) = E = E{z:= E)
[(Plz=y))(z:=y) = Plz:=y)]
(Plai=y)ly:=2) = Ply:=)]
(PAQ)e:=E) = Plz=E)AQ(s = E)

{(Note that z may occur i T)

We will use ezistential quantification and uwnwersal guantification. Existential quan-

tification is generalization of the disjunction. Let, for 1 > 0, Pi be a predicate. For

n > 0 the disjunction
POV --- v P{n-1)

15 denoted as

Predicate Calculus ¢]

(Hi:0<2 < n: Pi)
‘We have

[(Fi:0<2<0: Pi}) = false|
{F1:0<i<ntl: Pi) = (Fi:0<1<n: Pi)V Pa

In derivations this last line is accompanied by the hint ‘split of + = n'. Due to the
symmetry and associativity of V any term may be split off. In general, existential
quantification 15 of the form

(3. R. P)

where 2 18 a variable (or a list of variables), R is a predicate, called the range of the
quantification, and P is called the ferm. The range need not be finite, for mstance, 'z
15 an even natural number’ is expressed by

(i€ ZAi>0:2=2)

The term should be defined for all 1 that satisfy R. In general R and P depend on 1.
In some formulae we make this dependence more explicit and we write

(3i: Ra. Pd)
We have
(3¢ false . P) = false|

When the range of a quantification is false we say that the range is empty. Similarly,
a non-empty range means that the range is not false.

In (31 R : P) variable 7 1s cailed a bound veriable or a dummy. The expression
{H7 - R . P) does not depend on i. We wilj always use [resh names for dummies.
In particular, program vanables will never occur as the name of a bound variable.
Dummies may be renamed: for fresh variable 7 we have

[(Fi:R.P) = (3. Rli=4): Pli:=)]

Unless stated otherwise, dummies have type £ and we omit this type indication 1n the
range. For instance, ‘T is an even natural number’ 1s denoted as

(Ji:i>0:z = 20)

10 Predicate Calculus

We mention some properties of existential quantification.

[(d2: false: P} = false]
(Fi:i==.P) = P(i:=xz)| (one-pont rule)

[(B3::RAS:P) = (3:.R.SAP)| (trading)

[@ A (32:Ri:Pi) = (3i. Ri: G API)]
|Q v (3i: Ra:Pi) = (3v: Ra: @V P4)] for R non-empty

(Bi:R:PYv(@Fi:R:Q) = (i:R:PVQ)]
[(Q2:R.PYV (3i.5:P) = (2. RVS . P)|

[(Bi:Ri:Pi)A(Fi.84:Q4) = (Fi,5: Ran S5 P Q)
Universal quantification is a generalization of the conjunction. It 1s denoted as
(Vi:R:F)
We have similar {dual} rules for universal quantification:

[(Vi:false: P} = true|
{(Vi:i==z:P) = P{i-=x)] (one-point ruie)

[(Vi:RAS.P) = (Yi:R:§= P)] (trading)

Q@ vV (¥i:Ri:Pi) = (Vi: Rz Q V Pi)]
|Q A {¥i:R1:Pi) = (Vi:Ri:Q A Pi)] for R non-empty

(vi:R:PYA(Vi:R:Q) = (Vi.R:P A Q)]
[(Vi:R.PYA(Vi:§:P) = (VYi:RVS:P)

[(Yi:Ri:Pi)V (Vi:81:Q4) = (Vi,7: Ra A S3:.Piv Q)]
Universal and existential quantification are coupled by De Morgan’s Law:

[~(3i.R:P) = (Vi: R:-P)]

Note that [P] 1s also a form of universal quantification; it may also be written as
(Vz:z € X : P), where X 1s the state space. For universal quantification over a state

space, however, we always use the square brackets.

Predicate Caiculus 11

Exercises

a.

L.

}\.’J

Prove the ‘Golden Rule”: [PAQ =P =Q = PvQ|
Prove
() (P=Q)v=-R = PAR = Q|
(i) [PAB = R = P= (B= R)
(i) [(P=Q) = (PAR= QAR)]

Prove or disprove

B [(P=Q)v(Q=P)
Gi) [P = Q| V [Q = P|

3. Prove
BP=Q=P=Q=Q=PF|
(i} [P= Q = (P=Q)A(Q= P)
4. Prove
() [(Vi:i20:Pi) = POl
(i) [PO = (Fi:i20: Pi)
5. Determine how the following pairs of predicates are related {which of the predi-

cates is the weakest or strongest), if they are related at all:

flz<0and 2<1

(iYz>0 and 2 4 9% =0
fiiz21l=2>0and z2>1
(iviz>1and (i:i>2 0.2 =1)
{vI {(¥i.:P:(}) and (32: P- Q)

. Determine the strongest and the weakest solutions of the following equations in

Y.
MY:[Y = PvQ
) Y [YvQ=PvQ
(i) Y. [Y = PAQ]
(V) Y. [YAQ=PAQ

12 Predicate Calculus

7. Disprove
{3i.R:P)A(Fi.R: Q)= (F3i. R: PAQ)
8. Perform the following substitutions:
(1) (z*+ 2z + 1){z = z+a)
(i)} (=* 2 ¥)(w,y:=yt+l,2-1)
(iit) #* > y{z, v = y+1, 21}
(v} zzy+lAy 2z 2)z,y=x+3xz,2 —y+ 1)
(v} {a = b)(a:=a= 1)
9. Simplily the following expressions
(i) (Fi:1>20:3=2+1}
(il) (Vitiza:z<4)
(ili) (Fi:420:(F7:08 <2 =2%7))

Chapter 2

The Guarded Command Language

2.0 Introduction

A program is specified by its state space, a pre-condition and a post-condition. For
example, comsider the specification of a program for the computation of the greatest
common divisor of two positive natural numbers X and V-

{var =,y : nt;
{X>0AY>0Az=XAy=Y}
8

fr=XgedY}

I

The first line defines state space £ x Z, 1 which the first coordinate corresponds to
z and the second coordinate corresponds to y. In this chapter we restrict ourseives
to types int and bool. The latter denotes the set of boolean values, {true,false}.
The second line contains the pre-condition of the program. Variables X and ¥ are
called specification variables. They are not progratm variables and thus may not oceur
In program statements. They may occur in predicates; specifications are umiversally
quantified over all of the specification variables that occur in it. The third line contains
the name of the program specified. Finally, the fourth line states the post-condition.

The operationai interpretation of the specification 1s as follows: program 5 satisfies
the specification if for ail integers X and V', execution of S starting 1 a state satisfying
X>0AY>0Az=X Ay=Y terminates in a state satisfying = = AgedV

Programs, also called sietements, are introduced in the next sections. For each
statement S5 of the guarded command [anguage a proof rule (inference rule} is pre-
sented that shows how to prove that S satisfies a given specification. These rules are

13

14 The Guarded Command Language

inspired by the operational mnterpretation of § and by the operational interpretation

of [P} 5{Q}, which states

each execution of S termunates in a state satifying ¢ when applied to a
state satisfying P

As soon as the rules have been given, we will not rely on this operational interpretation
any more. As a preliminary, we discuss some general rules on programs. We shall then
define the guarded command language in such a way that the general rules are not
violated.

The first relation that we discuss is {P} 5 {{alse} which states that execution bf -

S starting in a state satisfying P terminates in a state satisfying false, i.e. in no state.

To exclude miracles, we require that the following rule is valid for all our programs:
" pa

{P} 5 {false} 1 equivalent to [P = false|

pr el o t'c[

[

Note that {P} S {true} expresses the fact that execution of 5 terminates when applied
—— o

to a state satisfying P.

Another rule is the fact that the pre-condition may be strengthened and the post- ;

condition may be weakened. This is formulated as follows:

{P}S5{Q} and [Py = P| implies {Fs}5{@Q}
{P}S{Q} and [Q => Qo| 1mplies {P} S {Qo}

Suppose that {P}S{Q} and {P}S{R} hold. Then, execution of S starting in a :
state satisfying P terminates in a state satisfying and also in a state satisfying R,
hience, in a state satisfying @ A R. This observation leads to the rule of conjunctivity:

{P}5{Q} and {P}S{R} isequivatent to {P}&{Q A R}

The last rule of this kind is

{P}5{Q} and {R}S{Q} isequivalent to {PVv R}S5{Q}

A more precise way in which constructs may be mtroduced is as follows. For each
construct S one defines a predicate transformer, denoted by wp.S, which is a function

it A

(ke

Introduction 15

from predicates to predicates. For consiruct S and predicate Q, wp.5.Q is interpreted
as the weakest predicate P for which {P}S{Q} holds. It is called the weakest pre-
condition of S with respect to @. The relation between the expressions {P}S{Q}
and wp.5.¢) 1s given by

3 -

{P}S{Q} is equivalent to {P = wp.5.Q]

We shall use proof rules in terms of {P} S {Q}. For the mterested reader, however, we
provide proof rules in terms of wealest pre-conditions as well. The rules of this section
follow from the following rules for wp.S:

[wp.S.false = false]
[wp.8.Q Awp.S.R
lwp.5.Q vV wp.S.R

wp.5(Q A R)]
= wp.5.(Q Vv R)]

We do not have

[wp.5.Q V wp.5.R

It

wp.5.(Q V R}

since we allow so-called non-defermunism in our programs. We will see examples of
non-determinismn in Section 2.4.

The examples used 1n this chapter may seern to be rather contrnived. Therr purpose
is to show how the proof rules should be used and not how programs are derived. The
derivation of programs is the subject of subsequent chapters: in this chapter programs
are merely presented. Moreover, these programs are not supposed to be ‘meaningful’
nor is the reader expected to figure out ‘what they do’,

1

Exercises Trdpii.

4 Q} 0. Give an operational deseription of {true} S {true} and of {false} 5 {true}.

; (U 1. Deduce from the rules of this section that

{Fo} 8 {Qo} and {P}S{Q\}

_ [-&’\Gh{ - L‘::;!S‘—(J
mplcs "t} S T
= P -
T L ! N
{PaAP}S{QuAGh} and {FV P} S{QeV s} (AR e

{: 2. Show {false} S {P} for any P and S

%.

13
R W ot

16 The Guarded Comimand Language

3. As explamed i this section, we denote for construct S and predicate @ the
weakest predicate X for which {X} 5 {Q} bolds as wp.5.Q. Then {P}S{Q} is

eguivalent to
[F = wp5.Q]
Show that the rules of this section foliow from the following rules for wp.S:

fwp.S.false = false|
lwp.5.Q Awp.S.R = wp.5.(Q A R)
lwp.S.QVwpS.R = wpS.(QV R)

4, Statement abort is specified by
{P} abort {Q} 1s equvalent to [P = false

{1) Give an operational mterpretation of abort,
(it} Determme wp.abort

(iii) Show that abort satisfies the rules of this section.

2.1 Skip

"The first statement that we consider is skip. Execution of skip does not have any effect
on the current state. As we will see later, it 1s important to be able to denote such ;
an action by a word like skup. From the operational mterpretation of {P}S{(} we
conclude that skip may be characterized by {Q}skip {@} for all predicates @. Since '5
the pre-condition may be strengthened, we prefer to characterize it by

{P}skip {Q} is equivalent to [P = Q|

For exampie,

[varz,y:int; {z > 1}skip {z > 0}]

iollows from
fE>1 = a2z

The weakest solution of X: {X}slkip{Q} 15 @, hence, in terms of weakest pre-
conditions skip is defined by

lwp.skip. = Q]

Assignment 17

Exercises

0. Prove:

(i) [var z,y:mt; {z > 0Ay > 0}skip {z > 0}].
mt; {z > 0Ay > 0}skip {y > 0}].
bool; {z = y}skip {z = y}].

(ii) [var ¢,y
(i) {var =,y :
1. Disprove:
int; {x > 0Ay > 0}skip{z =1}].
mt; {z > 0Ay > 0}skip {y > =}).
bool; {z = y}skip {z vy}

(i) [varz,y:
(ii) [var o,y

(iii) |[var =,y :

2. Show that the general rules of Section 2.0 hold for skip.

2.2 Assignment

Any change of sfate that occurs duning execution of a program is due to the execution
of an assignment statement. The assignment statement is of the form z:= E, where =
15 a program variable and £ is an expression of =’s type. Its operational interpretation
is: execution of == & replaces the value of x by the value of E. In predicates ths
replacement corresponds to substitution. For predicate @, we have that Q holds after
execution of z:= B if Q(z:= F) held before execution. This observation yields the
following rule for the assignment statement,

{P}=:=E{Q} is equivalent to [P = Q(z:= E)]
For example,

{z23}z=a41{z>0}
follows from
(7 2 0){(z = z+1)

{ substitution }
z+1 >0

{ arithmetic }
2> -1
= { arithmetic }

€ >3

il

Mif

18 The Guarded Command Langnage

The weakest solution of X: {X}z:=E {Q} is Q{z:= E), hence, in terms of weakest
pre-conditions the assignment statement is defined by

[wp.(z:= B).Q = Qz:= E)]

For instance, the weakest P for which {P} z:=z+1 {z > 0} holdsis z > —1.

It is not difficult to show that the general rules of Section 1.0 are valid for the
assignment. We will also use multiple assignments. For example,

{r=AAy=B}z,y=yz{z=BAry=A}

follows from

(z=BAy=A)z,y:=y1) = z=AAy=B|

Integer expressions consist of integer constants (represented in the usual way), vari- :
ables of type int, and combinations of these, formed by operators. We will use the unary :
operator — and the binary operators f

+ addition

- subtraction

* multiplication

max maximim

min minlmum

div quotient of integer division

mod remainder of integer division

Binary operators + and — have a lower priority than the other operators. Expressions
adivb and amodb are defined for b+ 0 by E
adivh=¢9g A amodb=1 = a=bsg-+1 A0S+ <[b

Note that equation {g,v) :

a=Dhbxg+r A 0 <r <|b hasfor b+ 0 precisely oneg
solution. E

As an example, we show {¢ + b)modb = amodbd for b # 0. We derive

Assignment 19

adivb=¢ A amodb=r

{ definition of div and med }
a=bxg4r A O0<r <[b

{ arithmetic }
a+b=bx{g+1)+r A 0<r < b

{ definition of div and mod }
{a+b)divb=¢g+1 A (a+bmodb=r

I

il

Hence, (2 +b)divd = adivt+ 1 and (2 +b)modb=cmodb.

In boolean expressions we use the unary operator = and the binary operators A,
V, =, <=, and =. Furthermore, one may form boolean expressions by applying the
relational operators <, <, >, >, =, and # to integer expressions. These operators have
a higher priority than the boolean operators and a lower priority than the arithmetic
operators. Examples of boolean expressions are, for a, 6 : mnt, p : bool,

asb<aAamod3=0
a>b-1vVp

Expressions such as a div b are not defined for all values of a and 6. The predicate that

defines for which values of its variables expression E is defined, is denoted by def B.
For mstance,

[def(amodb) = b0

[def.(a+b) = true|

[def.(xdiv(e—b)} = a#1]
[def(zdivy +ydive) = z#£0 Ay £0f

Since assignment = := F is only defined when def.E holds, we extend the definition of
the assignment to

{P}z:= E{Q} is equivalent to [P = def.E A Q(z:= E)]

Since for most expressions E [def, 5] holds, we usually omit def./ and calculate
Q(z:= E) only. In terms of weakest pre-conditions we have

I Lo ey ™

2 oy

s

20 The Guarded Command Language
fwp(z:=E).Q = del.E A Q(z:= F)]
Exercises

0. Determine the weakest predicate F that satisfies

(i) {Plz==z+l{z >0}

(i) {P}z:=z+xx{z>0}

(iti) {Plz=z+z+5—2%z+4{z >0}

(iv) [P}zi= o+l {z% —52% 4 2z > 0}

(v} {Plo:=z+z2z—2+z4+4 {27 —52% + 22> 0}
(v} {P}z=z+1{z==z+1}

(vii) {Plz:=Ei{z=FE} £
{viii) {P}z=zmod?2 [z =zmod2}
(ix) {P}a,y:i=z+l,y—1{z+y > 0}

(x) {P}zy:=y+l,0—1{z>0}
() {Pyz, =y +z,a+y{zt+y > 0}
(xii}) {P}a:=a = b{a}
(xiii} {P}er=a= b{aVb}

£
VL ¥Z& deoad

@1 1. Show that execution of z:= z+1 termmates. -~ .n,,0 ~ | g ‘

@) 2. Prove for 6 £ O:

(1) {emodb)modb = amodb
() emodb = a mod {—b}
(ii1) {emodb+ cmodb)modb = (a + ¢) modb

2.3 Catenation

Catenation allows us to describe sequences of actions. The catenation of § and T is
denoted as 5 ;T. Its operational interpretation is: first 3 is executed after which 1" is;
executed. To prove {P} ;T {Q}, we have to invent predicate R such that {FP} S {R} |
and {R}T{Q} hold. Then execution of § starting in a state satisfying P terminates
in a state satislymmg I, and execution of T starting in that state terminates in a state?,f_;

satislying Q. This leads to the following rule:

Catenation 21

{P} 5, T{Q} is equivalent to
a predicate I exists such that {P}S{R} and {R}T{Q}

!.‘jﬂ i (kllyq C
Note that the ser\zgi-colon 18 not used as a separatoror a term_ma.tor it is the composition
operator for combimng two statements. The weakest P that satisfies {P} 5,7 {Q} 1s
obtained by taking the weakest R in {R}T {Q@} and for that weakest B the weakest
P for which {P} S{R} holds. In terms of weakest preconditions this is captured by
the following definition:

e, ,f

[wp.(5; 7). = wp.S{wp.T.Q)]

j.e., the semi-colon corresponds to function composition. In particular, catenation is
agssociative. As an example, we prove

{var a,b: bool;

fla=A)A (b= B)}

a=a=h
ihi=a=b
cama=h

{{a= BYA (b= A)}
I

We calculate the weakest predicates that are allowed as intermediate predicates, pro-
ceeding from the bottom to the top, starting with the post-condition:

(le=BYA{(b= A} {a:=az=b)
= { substitution }
(a=b6=B}A (b= A)

and

({amb=Bia{b=
= { substitution }

(asam=b=Bin{c=b=4)
= { predicate calculus }

b=B)A(a=b=A4)

A)(b:=a=1b)

and, finally,

i
a3

The Guarded Command Language

((b=Byale=bzm A a=a=mb)
= { substitution }
(b=Bia(e=b=b=A)
= { predicate calculus }
(bm BYA(e= A)
= { predicate calcuius}

(az=AYN(=B)
From these results we conclude

ez AA(b=B)}a=a=b{(b=B)A(a=b= 4)} :
{b=BAa=b=A)}b=a=b{la=b= B A (b= A)}
{la=b=Bia(b=A)}a=a=b{la=B)A (b= A)}

which had to be proved. To avoid this duplication of predicates, these three arguments °

may be given in a so-called annoteted program:

[var a6 bool;

{{a= A) A (b= B)}

a:=a=b
{(b=Byn(a=b= A), Proof 0}
ihr=a=b
{laz=b=BIA{b=A), Proof 1}
iaz=a=h

{{a=B)A (b= A), Proof 2}
s

and Proofs 0, 1, and 2 are the derivations above (in the order 2, 1, and 0),

Exercises

U_,: 0. Determine the weakest predicate P that satisfies
(i) {P}z=z+l;3:=2+1 {z >0}
(ii) {Plz:=z*xz;z:=z+l{z >0}
(i) {Plz=sty y:=2—y;z:=a—y{r=A A y= B}
{iv) {Plz=yy:=2{z=A ANy= B}

Selection 23

(v} {P}z:=x+1;skip {z° > 0}

(i) {Ple=FEz=E{z=FE}
@ 1. Show that skip ;skip is equivalent to skip.
@ 2. Calculate expressions I such that

(i) {AmqeB+rlqg=E;r=r-B{A=q+B+r}

(i) {true}y:= EBiz=2div2{2+z =y}

(i) {g+y+prg=N}iz:=z-pig=E{asy+prq=N}
@ 3. Prove

[var =,y : int;

{z=A Ay=B}

Tiz= Ty Y= Bty B YT

{z=BnAy=A}

2.4 Selection

Selection takes the form
if BO— S0 --- [Ba—Sn fi

in which for 0 € ¢ < n, B.{ is a boolean expression (a guard) and S4 is a statement,
The construct B.x — 5.4 is called a guarded command. An operational inferpretation
of sefection is as follows:

Upon execution of a selection all guards are evaluated. If none of the guards
evaluates to true then execution of the selection aborts, otherwise one of
the guards that has the value true is chosen non-determanistically and the
corresponding statement is executed.

Abortion may be interpreted as *fails to terminate’. A possible implementation of the
selection is as follows: the guards are evaluated until one of these evaluates to true
after which the corresponding statement 1s executed.

As an example we derive a statement S that satisfies

[var =, v, z : int; {true} S {z = zmaxy}}

24 The Guarded Command Language

From
z=gmaxy = (z=zVze=y)Az>sAz>y
we conclude that z:= % 15 a candidate for S. As a pre-condition we then have

((z=zvVz=y)rAz2z A z2y)z:=x)
= { substitution } _
(zr=zvVos=y)Azs>2zAha>y §
B { caleulus }
T2y

which leads to the guarded command = > y — z:= x. On account of symmetry we
afso have y > # -~ z:= y. Combining these two leads to S:

if:c?my-—421=:1: l]yz:z——yz;.—_y fi

From [z > y V y > x| we mfer that the selection will not abort. Since guards need
not exclude each other, we were able to exploit the symmetry of max.

We are now ready to present the definition of selection, It 1s formulated for a |
selection statement that has two guarded commands.

{PYif Bo — S || B — 5 £ {Q} is equivalent to
(i) [P = Byv 5| and
(ii) {P A By} So (@} and {P A By} S, {Q}

In Section 2.2, we added def.F to the definition of z:= E. For selection, we have a
stmilar situation:

ifBa—-?Sg [}BI“—’SI fi

may only be executed in states where def.By A def.B, holds. Hence, instead of (i) the
formal proof obligation 1s

(i} 1P = def.By A def.B; A {By Vv By)] “

Since for mest expressions B [def.B| holds, we usually omit def. By A def.B; and
consider By V B; oaly. .

The fact that only one of the guards is chosen, is demonstrated in the following
example in which both guards are true. Its post-condition, £ = 1, may not be replaced
by & = 2. We prove

Selection 25

{z = O}if true - z:= z+1 || true — z:= z-+1 fi{z =1}

Proof:
{i) true V true

= { predicate calculus }
true

= { predicate calculus }
T=10

(ii) (z = 1)(z == z4+1)

= { substitution }
z+l=1

= { arithmetic }
=

Hence, {z =0 A true} z:=z+1{z = 1}

In programs we will use the following annotation aned corresponding proofs for the
selection:

{P}
if B(; —t {P A Bg} Sg {Q, PI‘OOf G}
I] Bl —* {P/\ B;} 51 {Q, Proof 1}

fi
{@, Proof 2}
with
Proof 0: a proof of {P A By} Sy {Q};
Proof 1. a preof of {P A B} 5, {Q}
Proof 2: a proof of [P = By Vv By| and, if relevant,

a proof of [P = def.By A def.B,|.
The next example exhibits the non-determinism of selection. Its post-condition may
be replaced neither by = = 1 nor by = —1. We annotate the following program and
we supply a proof for its correctness.

{z=0}if true » z:=1 [true = z:= —1 fifz =1V = —1}

The annotated version is

26 The Guarded Command Language

{z =0}

if true — {z =0} x:=1{x=1V = —1, Proof 0}
] tree = {g=0}z:=~1{z =1V 3= ~1, Proof 1}
fi

{x =1V z=—1, Proof 2}

Proof O:

(z=1vVz=—1){z:=1)

= { substitution }
1=1V 11

= {calculus } *
true

<z { predicate caleulus }
r=0

Proof 1: Similarly.
Proof 2:

true V true
= { predicate calcalus }
true
= { predicate calculus }

z =0

Hence, execution of this selection is guaranteed to terminate in a state satisfying .
=1V z = —1, but neither termination in a state satisfying & = 1 nor termination
in a state satisfying x = --1 can be guaranteed. i

In terms of weakest pre-conditions selection is characterized by

['wp.(if Bg - Sﬂ [IB] ek S} ﬁ).Q
= def.By A def.B; A (ByV By) A(Bp = wp.5p.Q} A (By = wp.51.Q Y

Since for most expressions B [def.B] holds, we usually omit def.Bg A def. By n ca.lcu—:»‘
lations with this weakest pre-condition. '

Selection

Fxercises

0. Prove:

(i) {true}ifz>1 —zr=x4l 2l —z=2-1 fi{z#1}.
(i) {true}if x>y —skip |z <y —z,y:=y,z fi{z 2y}
(i) || var =,y : mt;
{true}
T, Y=Y EY, T*T
ifr>y—z=a—y y2e—y=y-z &
{z20Ay20}
I
{iv) § var a,b: bool;
{true}
if waVb—am= g
] aV —=b s b:=-b
fi
{av b}
I

1, Prove: {P}if By — S5;5 {| By~ 515 fi {Q} 15 equuivalent to

2. Prove: {P}if By — Sy {| B1— 5 fi {Q} implies
{P}ifBﬁ—*Sg ﬁ Bl /\“'Bg—.‘sl ﬁ{Q}

3. Determine the weakest P such that

[var z : mnt;

{F}

x4l
ifr> 0 z:=z-1
Joa<l— zi=2x4+2
[=1~ skip

i}

{z >1}

28 The Guarded Comunand Language

2.5 Repetition

The next construct of the fanguage 1s repetition. Programs composed from the previous’
canstructs have execution times proportional to their length. It is possible to specify,
using repetition, a statement that 1s to be executed more than once. It has the form °

doBO—S50] - [[Bn-+ 8n od

in which for 0 £ 2 < n, B.t 15 a boolean expression (a guard) and S.z is a statement.’
An operalional interpretation of repetition is the following.

Upon execution of a repetition all guards are evaluated. If all guards eval-

uate to false then skip 15 executed. Otherwise one of the guards that has

value true 1s chosen non-deterministically and the corresponding staternent-
1s executed after which the repetition is executed again.

At the end of this section, we present a (rather complicated) expression for the weakest.
pre-condition of a repetition. In the design of programs we do not use this weakest
pre-condition. Instead, we use a rule known as the Invariance Theorem. In order to
explain this rule we consider repetitions with one guarded command, L.e. repetitions o?fi
the form do B — 5 od. From the operational description above we concinde

{P}do B — S od {(}
is equivaleat o

{P}if =B — skip | B — S:do B S od fi {Q}
Annotation of the selection yields

{r}

if =B — [P A-B}skip (¢}

i B— {PAB}S;doB - §od{@}
fi

{@}

Since {P}do B — 5 od {Q} should hold, we chovse P as intermediate predicate mg
the catenation S ;do B — § od. Thus, we have

{F}

if =B — {P n-B}skip{Q} ,
| B— {PAB}S{P};doB— 5 od{Q} B
f i
@

Repetition 29

with proof obligations

i) [PA-B = @

(i) {PAB}S{P}

(iii) {P}do B — S od {Q}

in winch (iii) gives rise to (i}, (i), and (iii} again. If we can ensure that the repetition

terminates, (i} and (ii) suffice. This 1s formulated for a repetition with two guarded
commands as follows.

(i) IPA-ByA=B; = Q] and

(il) {P A By} Sy {P} and {PAB}S {P}
implies

{Pldo By — 5 | B, — 5 od {@}

provided that this repetition terminates.

A predicate P that satisfies (if), ie. {P A By} So {P} and {P A B} S8, {P}, s called
an myarient of do By — 55 [| By - §; od.

Before discussing termination, we consider Edsger W. Dijkstra’s example of the
computation of the greatest common divisor of positive integers X and V. lis specifi-
cation is

[varz,y:inti{zr=XAy=Y Az >0Ay>0}S{z=XgedV}]

where X'gedY denotes the greatest common divisor of X and ¥; for zgedy with
>0 Ay >0, we have

(0) zgedr =12

(1) zgedy=ygedz

(2) 2>y = sgedy = (2 ~y)gedy and, applying {1}
y>1 = zsgedy = zged(y — z)

A derwation of a program based on these properties is presented in Chapter 4. Here
we supply an invariant without further justification and we focus our attention on the
proof obligations. Predicate P is defined as

Prz>0Ay>0Azpgedy=XgedV

The pre-condition of the specification implies P. Furthermore,

30 The Guarded Command Language
PAz>y
= { definition of P}
>0 Ay>0Azgedy =XgedY Az>y
= ({2}

z>0Ay>0A{z—y)gedy=XpgedY Az >y
{ arithmetic }
z—y>0Ay>0A{z—-y)gedy=XgedY
{ definition of P}
Plz:=z—-y)

Hence, {P A 2 > y}z:=z —y{P} and by symmetry {P Ay > z}y:= J~:1:{P}
Finally, we derive

PAa=lz>y) A-(y>)
{ arithmetic }
PAg=y
{ definition of P}
zgedo = XgedY
{(®}
z=XgedY

=

Application of the rule for repetition yields

P}
dor>y—z=z—y Jy>zs—y=y—zod
{z=XgedY}

provided that this repetition terminates.

Sincex=X Ay=Y A x>0 A y>0 is stronger than P, we also have

{zg=XAy=Y Az>0Ay>0}
doz>y—z=z—y Jy>z—y=y—zod
{z=XgedY}

provided that thns repetition terminates.

Termnation of a repetition is proved by means of an integer function on the state space
that 1s bounded from below and that decreases in each step of the repetition. Such a |

function 1s called a bound function. For the repetition above, a suitable bound flll’lﬂtl()ll

Repetition 31

is £ +y. From invariant P we infer 2z +y > 0, and both a =z —yand y:=y~ =
decrease T + y, i.e., for any constant C we have

{PArz>yha+y=Clz=z—y{z+y<C}
{PAy>zAzs+y=Cly=y—z{r+y<C}

and

Combining the previous rule with the termination requirement, we obtain

(i) [PA-BA—B = Q|

(it} {PABp}So{P} and {PA B} {F}

(ifi) an integer function ¢ on the state space exists such that
[PA(ByV B} = t>0]
{PAByAt=C} 5 {t<C},and
{PAB At=C}S5 {t<C}

implies

{P}do By =+ Sq | B, — 8 od {Q}

This rule is known as the Invariance Theorem. Such a repetition is annotated as follows.

{mvariant P:---, bound ¢t . .-}
do Bg — {P A Bﬂ} Sn {P, Proof I}
i Bi— {PAB}S {P, Proof 2}
od
{@, Proof 3, termination: Proof 4}
with
Proof 1: proof of {P A By} Sy {P};
Proof 2: proofof {P A B} 5, {P};
Proof 3: proofof [P A =By A =B, = @Q;

Proof 4: proofof (i) [P A (By vV B)) = £ >0,
(‘li) {P A B[) Al= C} Sg {t < C}, and
(@) {PAB At=C} 5 {t<C).

b

B

PR
o g LT

J

lew s g beid

32 The Guarded Command Language

Often, the invanant 15 the post-condition of a statement that precedes the repetition. |
That statement 15 sometimes called ‘the initialization of P or ‘the statement estab-

lishing P’ If § 1s such a statement and H 1s its pre-condition, the annatation is

{H}

5

{invariant: P, Proof 0, bound; -}
ido By — {P A By} S {P, Proof 1}

[Bi— {PnAB}S {P, Proof 2}

od

{@, Proof 3, termination: Proof 4 }

with Proof 0 contaimng a proof of {H} S {P}.

As with selection,
do By — 5 [B, — 5; od
1s only defined when def.By A def.B; holds. Hence, another proof obligation is
P = def.By A def By

When relevant, a proof thereof is added to Proof 3.
A

repetition for the computation of the greatest common divisor can be derived.

The denvation of a program 15 based on an wnvanant. However, in this chapter, |
for educational reasons, we give proofs of programs rather than deriving the program.
with its proof from scratch. Moreover, the examples and exercises are rather artificial: |
their only purpose is to show how the rules should be applied. An illustration thereof

1s given befow. We prove

[var z,3, N : mt; {V > 0}
z,y:=10,0
doz# 0 o~ pimz—1
l y#N — 3y:=z+1,y+1
od
{x=0Any=N}

1t s clear that repetition is the most complex construct of the guarded command :
{afiguage. Indeed, repetition is the essence of sequential programming. Programming ’
1s manly the use of suitable techniques to derive invanants. These techniques are |
the subject of subsequent chapters. For instance, it is shown in Chapter 4 how this

1

Repetition 33

It can be observed that the conjunciion of the negations of the guards forms the post-
condition. It remains to demonstrate termination. In the first guarded command
decreases and 1n the second guarded command —y decreases. However, & decrease of
~y is accompanted by an increase of x. Weighting the decrease of —y twice as much
as the increase of z yields « — 2y as a function that decreases in each step of this
repetition. Since tlus function has ~2N as final value, we add 2N to it. This results
in the bound function x4 2{N—y}. Clearly, the upper bound for y must be N and the
lower bound for z must be 0, thus, we propose as invariant

P 0z Ay<N
The anunotated program is

[var z,y, N :1nt; {NV > 0}
z,y:=00
{invariant P: 0 <z A y £ N, Proof 0, bound: = + 2AN—-y)}
idor#0 — {PAz#£0} z:=z~1{P, Proof 1}
f 9#N = {P Ay+#N}zy=gz+l,y+1 {P, Proof 2}
od
{z =0 A y = N, Proof 3, termination: Proof 4}

]])

aud the proofs are presented befow,
Proof O:

Plz,y=0,0)

{ substitution }
0<0AO0LN

{ calculus }
0<N

Proof 1:

Pla:=2z-1)

{ substitution }
0La~1 Ay N

{ arithmetic }
0<zAyus<NAz#£D

{ definition of P}
PArz#£D

iif

34 The Guarded Command Language

Proof 2:

Pz, y = z+1,y+1)

{ substitution }
0<zil Aytl< N

{ arithmetic }

<z AysNAy#N
{ definition of P}
PAy#EN

=

Proof 3:

P A=z #0) A =(y#N)
{ calculus }
z=0Ay=N

=

Proof 4:

()

(i)

(i)

=

=

<

Paf{z#0vy#N
{ definition of P}
0<zsAy<N
{ arithmetic }
z+2(N—y) >0

{(z+2N—y))z:=3—-1)
{ substitution }

&~ 14 2(N—y)
{ arithmetic }

T+ 2N~y

(2 + 2(N—y))(z,y:=z+1,y+1)
{ substitution }
e +1+ 2N = (y+1))
{ arithmetic }
z+2(N—y)—1
{ arithmetic }
z+2(N~y)

Repetition 35

For the interested reader we discuss the weakest pre-condition of do B — 5 od.
As mentioned before, we define do B — S od as being equivalent to

ifB—skp | P—S5;doB-—5ead A
We abbreviate do B — 5 od to DO, and we derive

wp. DO.G
{see above }
wp.(if =B — skip | B — §;D0 £).Q
{ definition of selection }
(=B vV B} A {~B = wpskip.Q) A (B = wp.(5;00).Q)
= {["BV B = true|, definitions of skip and catenation }
(-B = Q) A (B = wp.S.(wp.DO.QY)

= { predicate caleulus }

(BvV Q) A (=B V wp.S.(wp.DO.Q))

[l

fil

Hence,
[wp.DO.G = (BV Q) A (=B V wp.S(wp.DO.Q))
1., wp.DO.Q) is a solution of the following equation in predicate X:
X:[X = (Bv@)a(=BvVwpSX)
This 1s a so-called recursive equation, We define wp.(do B — S od).Q as the strongest
solution of this equation (it can be shown that a strongest solution exists). With this

definition the Invariance Theorem can be proved. Such a proof, however, 15 beyond
the scope of this book.

As an example, we compute wp{do n # 0 -— n:= n-2 od).(n = 0). For tihis
specific choice the equation is

X (X2 n£0ve=0}A(n=0Vup(n:=n~2).X)|
which may be simplified to
X X =a=0vX(n:=n-2)]

The strongest solution of this equation can be obtained by successive approximation,
starting with false (the strongest predicate of all). Define for & > 0 predicate X, by

36 The Guarded Command Language
[Xo = [alse
[Xi1 = n=0V Xz(n:=n-2)]

then the strongest solution is
3Ek-0< k. Xp)

Starting with [Xy = false| we have

Xu
{ definition of X, {X, = false] }

n =0V false)
{ predicate calculus }

I1é

n=10
and

Xy

= { definition of X, [X; = n=10]}
n=0V (n=0){n=n-2)

= { substitution }
n=0Vn=2

Similarly, we have [X3 = n=0V n =2V n= 4] and with induction one can prove

[Xix = 082 < 2k A nmod?2 = 0. This result yields

wp.(don # 0 — ni=n—2 od)(n =0)
= {strongest solution of the equation }
(Bk:0<k: X
= { substitute X} }
(3k:0<k: 05 n <26 A nmod?2 =0)
= {calculus }

0<n Anmod2=20

Hence, {wp.{don £ 0 — n:=n-2 od).(r=0) = 0<n A nmod2=0|. It is easy

to verify that 0 < n A nmod2 = 0 13 indeed a solution of

X: X = n=0vX(n:=n-2)

Repetition

Exercises

4 Prove the correctness of the following programs

0. { var =z, N :int; {V > 0}

F:=10
jdoz# N — z:=z+1 od
{z =N}

I

i [[var oy, N :nt; {N > 0}
T,y:=0,1
idox £ N s 3, y= 541, y+y od
{y=2"}
Il

2. | var y, N : mt; {N >0}
yi=1
idoy < N - yi=yt+y od
{y2NA@Bk.k20:y=2%}
Il

3. fivar z,y, N :int; {N >0}
x, = 0,0
idox # 0 s 3= 2]
| ¥# N —a,y:=N,y+l
od
{z=0Ay=N}
I

4. || var z, ¥, z : mt; {true}
dor <y-— z:=zx+1
T y<zmy=ytl
§ 2< @ 22 241
od
{z=y=z}
I

37

38 The Guarded Command Language

§. The following program may be used to compute (non-deterministically) natm‘al
numbers x and y such that £+ y = N. Prove:

[var p,z,y, N :mt; {N > 1}
poayi=N-1,1,1
{N=z+y+p}
;dop+#£0
-+ if pmodz =0 — y,p=y+1l,p—x
| pmody =0 — z,p:=xz+1,p~y
fi
od
{zxy=N}
I

6. Tor natural a and b, e ged b denoctes the greatest common divisor of a and &. By
definition Ogeda = a A aged0 = a. Prove

{i) aged b =bged (emodb) fora>b> 0.
(ii) || var z,y, 4, B :int; {A> B> 0}

7= A B)
idoy#0— z,y:=y,smody od '
{r = Agcd B}

I

2.6 Constants, Inner Blocks, and Arrays

A passible specification for a program for the computation of the greatest commen
divisor of two positive integers 15

[var A, B, = int;
{A>0A B>0}
ged
{z = Aged B}
I

This specification, however, has 4, B,5:=1,1,1 as possible sofution. Of course, thivs.
solution is not what we have in mind. To exclude such solutions, we might change the= '

specification to

Constants, Inner Blocks, and Arrays 39

[fvar 4, B,z : int;

{A=AgAB=By A A>0A B>0}
ged

{z=AgcdB A A=A A B= By}

I,

expressing that the final values of A and B equal their initial values. This specification
still allows assignments to A and B. We use in the declaration con instead of var
to express the fact that no value should be assigned to the listed names. Hence, a
specification that avoids the problems mentioned above is

[con 4,B:int {4 >0 A B >0}
Var T int;
ged

{z = Agcd B}

I

Variables defined as con may not occur on the left-hand side of an assignment. Asser-
tions about constants, such as 4 > 0 A B > 0, should not be repeated in annotations
and should not be part of an nvanant. They are ‘universally invariant’ since the val-
ues of constants do not change. Assertions about constants provide a context of the
program and may be used in proofs whenever appropriate. Constanis are not part of
the state space.

Another addition to the guarded command language are so-called tnner blocks.
These are used to extend the state space (locally) by means of new vanables. An inner

block has the form [[var --- ;S]. For variables introduced in an inner block, we use
fresh names. As an example, we present a solution to ged:

[con 4,B:int; {A>0A B >0}
Vvar z : int;
f var ¥ : mt
z,y:=A,B
doz >y — z:=g5-y
I yoz—y=y—=x
od
{x=AgedB A y=Agcd B}
!
{z = Agcd B}
i

T

40 The Guarded Commiand Language

In the inner block variable y of type int occurs. Between the inner scope symbols [
and || the state space has two coordinates, # and y. Outside the inner block the state
space has one coordinate, x

We formulate a rule for inner blocks for the case that the state space 13 exteuded
with {fresh} vanable y:

For predicates P and { in which y does not occur

{P}{vary:int;S§{Q}

is equivalent to

Note that {F}{vary:mt;5) {Q} 15 an assertion involving the states of the original |
state space, whereas {P} S {Q} is an assertion over the state space extended with Y.
In terms of weakest pre-conditions, it 1s defined by :

fupfilvary 1, 5].Q = Vy -y € 2 wp.5.Q)]

The umiversal quantification over y guarantees that {(Vy -y € Z - wp.5.Q) depends:
on the variables of the original state space only. It says that, no matter what zmtlal
value y has, S should fead to a state satisfying @. ;

Arrays are the final subject that we discuss in this chapter. Often arrays are!
cousidered as an abbreviation for a set of variables. We view arrays as functions on a:
finite consecutive subset of the intepers. Such a subset is also called a segment. For’
p < g the segment consisting of all 1 satisfymg p < 1 < g is denoted by {p..gq). It has-
length ¢ — p. The statement

J . array [p..g)of int

defines a program variable f which has as value a function: [p..q) — Z. For the timq‘g
being we use arrays defined as con only, and we restrict the operations on arrays to:
function application. For integer expression F, f.F denotes f applied to E. Of course,’

f-E 1s only defined when p < E < ¢, L.e,, i
[def.(f.E) = del.E Ap< E <4

We also use notation such as [p..g}, {p..q|, and {p..gq). The sentence ‘integer array-u
Sfi0.NY' is short for *f of type array [0..V) of int’. Instead of

[array [0.N)of array [0..M) of int
we may aiso write

[array 0. N)x|0..M) of int.

Constants, Inner Blocks, and Arrays

Exercises
0. Prove

{var z,y:int {xr=4 A y=B};
il var & : int;
hi=gz=yy:="h

J
{z=BAy=A}

J
I. Determine wp.[varh:imt jh=gix=y;y=h]{z=B A y=4)
2. Show that for P not depending on y

{Frs{Q}

implies

{PHvary:mt; STy :

yEZ:Q)}

3. Prove

(i} {con N :mt {N > 0}; f: array [0..V) of int;

var b ; bool;
[var n:int;
b, n = false, 0

don#EN—=b:=06Vfn=0 n=n+1 od
I
(b= F1:0Z < N: fa=0)}
J-
(ii) fcon N :nt {N > 0}; f: array {0..N) of int;
var b : bool;
[var = : int;
b, n.:= false, 0
don#FNA-D ~— bi=fn=0; n:=n+1 od

b= 3Fi:05i<N: fi=0}}

41

42 The Guarded Command Language

2.7 Summary

We have the following proof rules for constructs of the guarded command language.

skip:

assignment:

catenation:

selection:

repetition:

inner blocks:

{P}skip {Q} is equivalent to [P = |

[P}=:= E{Q} is equivalent to [P = del.B A Q(z:= E)]

{P} 5,7 {Q} 1s equivalent to
a predicate B exists such that {P}S{R} and {R} T {Q}

{P}¥ By — 5 [By — 51 fi {@} 15 equivalent to
(i [P = BoVv B;l and
(i) {P A Bo} So {Q} and {PA B} S5 {Q}

(i) [PA-BoA-B = Q|

(ity {PAB}S;{F} and {PAB}5 {FP}

(ii1) an integer function ¢ on the state space exists such that
[P A(ByV By} = £20]
{PAByAt=C} 8 {t <C}, and
{PAB At=C}8 {t<C}

implies

{P}do By — S [B, — S od {Q}

For predicates P and @ in which y does not occur

{P}ivary:int;S]{@} isequivalent to {F} S {Q}

Summary 43

The operational interpretation of {P} S{Q} is

All executions of § starting in a state satisfying P
terminate in a state satisfying Q.

1 Statements of the guarded command language satisfy the following rules:

{P} S {false} is equivalent to [P = false]

{P}8{Q} and |Po = P| implies {P} S{Q}

{P}S5{Q} and [@ = Q| implies {F} 5{Qo}

{P}5{Q} and {P}S{R} is equivalent to {P}S{QA R}

{P}8{Q} and {R}S{Q} is equivalent to {PV R}S{Q}

Chapter 3

Quantifications

i

Many practical programmng problems mvolve the computation of a function over a

sequence, such as the maximum elerment of a sequence of integers, the conjunction off

a sequence of booleans, the sum of a sequence of miegers, etc.. In order fo specify
such computations, we introduce a uniform notation, which is similar to that used fer
universal and existential quantification.

Let X be a set and let & be a bmary operator on X such that @ 1s commutative
associative and has e as identity, i.e.,

zs®y=ydPsz -
c®(y@z)={zdy)d=z
eBr=x@e==c

for ali m, y, and z in X. For sequence 2.1, 0 < ¢, and natural number n, we write

z.0® - dx{n-1)

(Pr:0<i<n:zi)
for which we have

(Bi:0gi<0:ni)=¢
(@1:0<i<nil.ci)={@1:0<1<n:zii@an

ki

This last line may be accompanied by the note 'split off i==n'. Due to the commutativily

and associativity of @ any term may be split off. In general such a quantification i 50 _'

the form

44

Quantifications 45

where = is 2 list of variables, R is a predicate, celled the range of the quantification,
and F is called the ferm. The term should be defined for all & that satisfy K. In general
R and F depend on z. In some formulas we make this dependence more explicit and
we write

{(®z: Rz: Fx)
We have
(B z: false : F') == ¢, the identity of @.

Addition and multiplication are well-known operators on Z. For these we have, for
mstance,
(+7:3<i<5:) =3 +42 =125
(+z,y:0<zs<3A0<y<3.:z*y)=9
(#k:1<k<4:k)=1+243=6
(tz:false: Fx)=0Q
(xz:false: Fz)=1

As a more detatled example, we consider the binary operators max and min defined
on Z by

amaxb=c = {e=cVb=cjAha<lcAnb<e
eminb=c = {e=cVh=c)AaZcAb>c

An identity e for max should satisfy

emaxa=a forallain Z, re.,

e<g forallam Z

Since no such integer exists, we extend Z with the value —oo for which, by definition,
=0 % ¢ for all @ i Z. Similarly, we add oo as ideatity for min. Thus, we have

{max2 : false : i) = —o0
TIMax —os =
Z1in o0 = —co

{mini:false: Fli)= o
zminoo =g
T MExoo = 0o

46 Quantifications

Addition and muitiplication are not defined for oo and —oo, hence, expressions like
oo+ a and 3 * —o0 are not allowed. Operators min and max distribute over each |

other:

o min (max:: R: Fd) = (max:: 1z min F1)
z max (mini: R: Fi} = (mint: R:x max F.{)

Furthermore, we have for a non-empiy range R

z + (maxi: R: Fi)= (maxi: R:x+ Fi)
T4 (mini: R i) = (min? . Bz + Fi)

These rules are phrased as '+ distributes over max and min when the range 1s non- |
empty’ The fact that max is idempotent, i.e., a maxa = a for all e, may be expressed :

by
{(maxi: RV S F)={(max:. . F) max {maxi. 5. F)

A similar equality holds for min.

This concludes our treatment of min and max. Other binary operators with
other rules, and other lists of properties could be given. However, instead of doing so,

we shall consider the general binary operator @ agam, for which we have

(Bi:false . Fy=e

(Brri=z:F)= F{i =gz)

@i - R:Fye®i:5:F}=@®i:RVS . F)@®i:RAS.F)
@i R.FYe (@i R:G) = (6i:R:Fag)

(®r:Re: (@757 :Fig)) = (®j:57:(®i: Ri: Fij))

When @ 1s idempotent as well, i.e.,, s @z = x for all z, then

{®:: RVS.F)
z@®{H:. R.F)

@®: . R:F & (Bi:5: F)
(@ R:z@® F) for R non-empty

Let ® be a binary operator on X that distributes over @, and has e as zero, iLe.,
re=e®@z=ceforall zin X. Then

@@ R . =(@®i:R:z@F)
(@B Ri: P @ (B1:54-Gd) = {@4,3:RiASy: Fi®dj)

The following associative and commutative operators will be used frequently:

[

|

Quantifications 47

identity 0,

distributes over max and min when the range 1s non-empty;
* identity 1,

zero (0,

distributes over +;

identity —oo,

ZEI0 OO

idemnpotent,

distributes over min;

max

identity oo,

ZEro —00

idempotent,
distributes over max;

identity true,

zero false
idempotent,
distributes over Vv;

identity false,
zero true
idempotent,
distributes over A.

We mention some more rules for max and min.

Tor £ 2 0 and R non-empty:

z#(maxt: Ra: Fi) = (maxz. Ri:zx Fi)

£+ {mini: Ri: Fi) (mine . Ri:z+ FJ)

and
—(max:: R1: Fi} = (mini: Ri —Fi)

Instead of (A2 : R . F)} we write the more common (Vi :
(Vi:R:F)weuse (3i: R: F).

In derivations of programs, we often use the following relations (R is non-empty):

R : F) and instead of

F.gw= (maxi: Ra: Fi)
Fz={(mini: R::Fi)

Rz A(Vi:Ra: Fi< Fux)
Rz A{Vi:Ri . Fi> Fax)

[

46 Quantifications

Addition and multiplication are not defined for oo and ~oo, hence, expressions like :
oo+ a and 3 * —co are not allowed. Operators min and max distribute over each °
other: g

z min {max:: R : F.i) = (maxi . A:z min F{)
z max {mine; B: Fi) = (minz: . Rz max F.i)

Furthermore, we have for a non-empty range R

T+ (maxz: R Fi)= (maxi . R:z+ Fi)
z+ {minz. R. Fi} = (min: . B : 5+ Fi)

These rules are phrased as ‘+ distributes over max and min when the range is non-
empty”- The fact that max is idempotent, i.e., a max e = a for all a, may be expressed

by
(maxi: RV § . F}={(max:: R.F) max (max:; 5§ : F)

A similar equality holds for min.
This concludes our ireatment of min and max. Other bhinary operators withf
other rules, and other lists of properties could be given. However, tnstead of doing so, |
we shall consider the general binary operator & again, for which we have g :
(Br:false: F)=e¢
(Brie=z: F)=F{ =2x)
(®:. R F1@ (@: 5.)= (@ RVvS . Fla (@ :BA S F)
(@B FMae (@ R:G) = (@i R.Faq)
@1 - Ra:{®3:57 Fij)) = (7:57:(®1: Ri: Fij))

When @ is idempotent as well, Le., 2 ® z = x for all &, then

@+ RVS.F) = (@®:. R.-F)d (B2:5.F) :
@@ R:F) = (@:. R:x$ F} for R non-empty ;

Let ® be a binary operator on X that distributes over @, and has e as zero, Le.,
rR@e=e®@z=eforall zin X. Then :

@ (@i R. Fl=(@:1:R:z2@F)
(Br: R Fi) @ (Be.52:Gi4) = (®1,7. R A 87: Fi®G.j)

The following associative and commutative operators will be used frequently:

Quantifications 47

+ identity 0,

distributes over max and min when the range is non-empty:
® identity 1,

zero O,

distributes over +,

max identity —og,
Zero oo
idempotent,
distributes over min;
min identity oo,
ZEro —oo
idempotent,
distributes over max;

A identity true,
zero false
idempotent,
distributes over V,

Y identity false,
zero true
idempotent,
distributes over A.

] We mention some more rules for max and min.

For z 2 0 and R non-empty:

z#(maxe: Bi: Fi) = (maxs: Ri:z+ Fi)
s#{minz;: Ba: Fi) = {min:: Ri:x+ Fi)

and
—(maxi: R Fi) = {mini: Ri: ~FJ)

Instead of (A1 : R : F) we write the more common (Vi : R . F) and instead of
(Vi:R:F)weuse (Ji: R:F).

| In derivations of programs, we often use the following relations (R is nop-empty):

F=(maxi: Ri:Fi) = Rz A (Vi:Ra. Fi< Fa)
Faz=(mini.R::Fi) = Rax A (Yi: Ri: Fi> Fa)

48 Quantifications

For summation, a common notation is {£7 - R : F') mnstead of (+4: B : F), and forg
multiplication we use (I11: R : F') instead of (x2.: R . F}. '

A quite different quantifier is ‘the number of’. We introduce it as follows. Function’
- {false,true} — {0,1} is defined by # .false = 0 and # .true = 1. Expression

(#1: Ra: Fd)
1s defined as
(Se: R # (F1))
Tor this quantifier we have
(#1:false: Fi) =0
and, for n > 0, !

(#1:0< 1<l Py =(#1:0< 1< n: Fi)+#.(Fn)

__f (#1:0<i<n:Fi)+1 if Fn
_1{#1:051<n:F.i) if 2 Fn

Notice that

Bi R Fy=(#i R 21
(Vi.R.F) = (#:: R.F)={#1: R:true)

We will use the following definitions for increasing, decreasing, ascending, and de-’
scending. Let N > 0 and let X{0..N} be an array of integers. Then |

X isinereasing = (V4,710 1<y <N . X2 <X j)
X is decreasing = (Vi,7:0Z5e <) <N :Xi> X5}
X is ascending = (¥Vi,7:0<t<j< N X2 X §)
X is descending = (Vi,7:0<i<j< N :Xiz> X

i

For example, a formal expression for °r is the length of a longest ascending segment of

X'is H

rwm(maxp, g 0<pS<gS< N AV, i p<Li<ji<qg: Xi<Xj)iqg—p}

Quantifications 49

Exercises

0. Aninteger array X{0..N) 1s given, where N > 1. Express the following sentences
in a formal way:

(a)
(b)
(c]
{d)
(e)
(f)
(2)
{h)
@
{i)
(k)
M
(m)
(n)
(o)

7 is the sum of the elements of X.

m is the maximum of the array.

X is increasing.

all values of X are distinct.

all values of X are equal.

if X contains a 1 then X contains a 0 as well.

no two neighbors m X are equal.

the maximum of X occurs only once in X.

7 is the length of a longest constant segment of X.
X 1s a permutation of [0..N}.

all elements of X are prime numbers.

the number of odd elemenis equals the number of even elements.
7 is the product of the positive elements of X.

r is the maximum of the sums of the segments of X.

X contains a square.

1. An integer array X[0..N) 1s given, where N > 1. Express the following expres-
sions in a natural language.

(a)
(b)
(e}
(d)
(e)
0
(g)
(h)

b= (Vi:0<i<N:Xi>0)
r=(maxp,q:0<p<g<NAVi:p<i<q: Xi>0).q—p)
r=(#k0SE<N (Vi 0 <k: X< XE)

b= (3i:0<i< N X(i-1) < X.i)
r={#pg:0<p<ga<N: Xp=0AXg=1)
s={maxp,q:0<p<g< N : Xp+Xyg)

b= (Vp,q:0<pA0<gApiq=N-1:Xp=X.q)

b= (di:0<i< N : Xu=0)

]

2. Prove amax(bminc) = (amaxb) min (a maxc).

50 Quantifications

3. The greatest common divisor of natural numbers = and y is denoted by cgedy.
By definition 0ged 0 = 0.
(i} Give a formal definition of ged.
(ii) Show that ged Is commutative and associative.
(i) Prove that ged has an identity.

{iv) Investigate whether * or - distribute over ged.

4, Prove

[con N :wmt {IN > 1}; f: array {0..V) of int;
var z :1of;
[var y : int;
w0, N-1
idoxm#y
—if fz < fy-— z:=241
I fo<foz—y=y-1
fi
od

I

{fr=(max1:0<s< N fi)}
Il

Chapter 4

General Programming Techniques

4.0 Introduction

The rest of this book is devoted to the derivation of programs. In the chapters that fol-
low we shall discuss domain specific techniques. However, in this chapter some general
underlying techniques are presented. The programming problems that we are study-
ing typically have solutions in which repetitions occur. Thus, the design of suitable
mvarsants is crucial in the derivation of solutions to these problems.

As will turn out in the next sections and chapters, there are many ways 11 which
an mvarant may be deduced from (the contents of) the pre- and post-condition of
a specification. Program denvation is not mechanical: in general it 1s a challenging
sctivity and i requires creativity, However, many programming problems may, to a
large extent, be sofved by pure calculation and by carefully applying the techniques
discussed in this chapter. Moreover, the derivations show where the creativity comes
1.

We do not always present completely annotated programs. Program denvations
ate carried out in such a way that the result is correct by design and that it is easy to
deduce an annotated program with accompanying proofs.

The efficiency of a program is expressed as the upper bound of the number of steps
that each repelition can take. This so-called time complexity is a function of (the
values of) the constants m the specification. We use the Chnotation to express the
time complexity. If, for instance, a program has natural IV as constant then ‘the time
complexity is O(f.N)" means that the number of steps is bounded by a constant times
f.N. For instance, if the number of steps equals §N?—2N+4 then the time complexity
15 O(N?),

Effictency 1s of vital importance in computing science. Usually, programs are written
only once and they are executed many times. To illustrate the role of efliciency, we

51

52 General Programmmg Techniques

consider a program consisting of a repetition of a statement which requires, in isolation,
one second for each execution. The program contains integer NV as constant. The
execution time of the program is shown below for the cases that the repetition performs

Nog N, VN, N, and N? steps.

number of steps N = 1060 N =1000000
log N 10 seconds 20 seconds
VN 30 seconds 15 minutes

N 15 minutes 300 hours

n? 300 hours 30000 years

If we succeed in speeding up the hardware such that execution of 3 takes a millisecond,
1.e., we improve it by a factor 1000, then we obtain the following figures.

number of steps N = 1000 N = 1000000
Hlog NV 0.01 seconds 0.02 seconds
VN 0.03 seconds 1 second

N 1 second 15 minutes
N® 15 minutes 30 years

A significant improvement of & program is not obtained by tricky adaptations that, for
instance, save a variable or save an assignment within a repetition. Such changes often
destroy the elegance and clarity of the original algorithm. Similarly, case analysis in
which ‘easy to compute’ cases are treated separately does not really help,

A huge improvement is a reduction from, for instance, O{N) to O(log N}. Such an °

umprovement is obtained by transforming the program into a more efficient one, or by

deriving a completely different program. Examples of this are discussed in Chapter §. |

4.1 Taking conjuncts as invariant

When post-condition R is of the form P A, one may try to take one of the conjuncts,
say P, as an invariant, and the other one as negation of the guard of a repetition,
leading to

{Plde =@ — Sod {PAQ}

In its simplest form this method yields, taking true as invanant,

{true} do ~R — S od {R}

Taking conjuncts as invariant 53

For instance, for integer variables x and y, £ £ y can be established by
doz>y—zy:=y2zo0d

for which true is an invariant and z — ¥ 1s a bound function, as the reader may verify.
A similar sorting program for four 1ntegers a, b, ¢, and d is obtained by taking true as
mvariant and the negations of the conjuncts of post-condition

R: a<bnrnb<ehc<d
as puards, leading to

{true}
doa>b-ab=ba
[b>c-sbc==ch
[c»d-scdi=dc
od

{agb<e<d}

{(Why does it terminate?)

A somewhat more interesting example is the computation of div and maod when only
operators 4+ and — may be used. Its specification reads

[con A, B:int{A>0n B >0},
var 4,7 :inf;

divmod
{g=AdivB A 7= Amod B}

I
We rewrite post-condition R, using the definitions of div and mod, as
R: A=qxB+r AOD<T<B
Conjunct 0 € r < B 1s an abbreviation of 0 £ r A r < B; hence, we may write
R: A=g+B+r AQ0<r Ar<B

There are three conjuncts and possible solutions may, for instance, contain repetitions
of the form

e

54 General Programming Techniques

{P:0<rAr<BldoAs#g*B+r— 5od{R},
{P-A=q+#B+r Ar<B}do0>r -5 od{R},or
{P:A=q+xB+rA0<r}dor>B — S od{A}

We choose as invariant
P A=gxB4+r AQ<T

and as guard v > B, the negation of r < B, leading to a program of the form
{P}dor > B — Sod{R}

Invariant P is established by ¢,7-= 0, A. Since P implies 0 < r, we decide to take r
as bound function. Then S has to decrease r. The guard is » > B, and, since B > 0,
= v—B 15 a candidate for 5. We derive

P(r-=r—B)
{ substitution }
A=g*B+r-~BA0O<r-B
{ calculus }
A={g-1}*B+rAr>8

fit

Hence,

Plg,r=g+1, 7B

= { substitution, see above }
A=gsB+rAr2>B

= { definition of F}
PAar>B

This yields the following solution to divmod:

g.r:=0A

{invaniant P: A =g+ B+r A 0 <7, hound: r}
idor > B — q,r:=g+1,r~B od

(7}

The .initiai velue of g 15 0, its final value is Adiv B, and in each step of the repetition
q 15 increased by 1. We conclude that this program has time complexity O(Adiv B).

Taking conjuncts as invariant 55

In the next chapter we show that, if one allows div 2 and mod?2 as operators as well,
a program can be derived that has time complexity O(log(A div B)).

As another example, we derive a program for the computation of the square root,
rounded down, of a natural number. It is specified by

[con NV :int {N = 0};
var z : int;
square root
{# <N A (z+1)? > N}
I-

We try as invariant P : 22 < N, which is established by z:= 0.
Negation of {(z+1)* > IV yields (z+1)* < IV as guard, leading to

z:=0{F} ido{z+1}# (z+1) <N = S od {z? < N A (z+1)* > N}

Since P implies N = 5% > 0, N — z? seems appropriate as bound function. However,
N~ z? decreases for increasing = if and only if 0 < =, which cannot be inferred from
P A B. This problem is solved by specifying a bound for z: strengthen P to

P: 0<ae A <N
We investigate an increase of & by 1:

Plz:=x+1)
= { substitution }
0<s+1i A+l SN
s { calculus }
0<z A (e+1? SN
4z { definition of P}
PA{z+IP SN

leading to

{N =0}

z:=0

{invariant P 0 <z A z* < N, bound: N —z*}
ido (z41) % (z+1} € N — z:=z+1 od

{z* < N A (z+1) > N}

56 General Programming Techniques

This program has time complexity O{\/ﬁ} In Chapter 6 we present a solution for
square rool that has time complexity O(log N).

Instead of x* < N, we may also take {z-+1)® > N as invariant and T+ z > N as
guard. This choice leads to

(N >0}
z:=N
{invariant P+ 0 <z A (z+1)* > N, bound: z}
oz >N —z:=1~10d
{22 < N A (z+1¥ > N}
Execution of this program, however, takes about N — /N steps and has, therefore,
time complexity O(IN), which is worse than O(v/N).

As a final remark, we mention that it is quite common that invariants have to be
strengthened with bounds for the variables involved. As a matter of fact, it is a good
haht to include bounds for the variables right away.

Exercises

For each exercise that is specified in natural language, one has to supply a formal

specification first,

0. Derive a program for the computation of *log N, rounded down, for pasitive

integer N.

1. Derive, for given N, N > 0, a program for the computation of the smallest integer

x that satisfies 2® — 6% 4 9z > N.

2

T that satisfles % — 6z + 9z < N, Sx - 203 s @
Biom T b &T) = 3 2o oalpws .
3. Solve e Ba o

[con A, B :int{A>0A B >0}
var T ; ink;
fcm
{z = Atcm B}
I-

where lcm denotes the least common multiple, ie., for A>0AB > 0

AlemB = {mini:1giAimodA=0AimodB=0:1)

. Denive, for given N, N > 0, a program for the computation of the largest integer

Replacing constants by variables 57

4.2 Replacing constants by variables

We consider the computation of A to the power B for given naturals 4 and B. This
problem is formally specified as

fcon A, B:mt{4A>0A B >0}
var 7 ; int;
erponentiation
{r=47)
I

where, by definition, 0° == 1. There is no obvious way in which the post-condition can
be weakened to a suitable invariant. In the state space defined by v predicate » = A%
corresponds to a single point. When we extend the state space by introducing a fresh
vanable x, say, the state space defined by r and z contains the entire line satisfying
r = AP and in this space this relation may be more easily established. A way in
which fresh variables can be mtroduced is by replacing constants by variables. Such a
replacement yields a possible invariant, For this specification possible choices are

.
e xP re AT and 7o ¥
We use the imvariant

P()' T=A:£

Then Py A = = B implies the post-condition, and Py 1s established by r,z:= 1,0.
Furthermore, we specify an upper bound for T and add to the invariant

P(: 5 S B
This yields the program scheme
rz:=10{F AP} dox# B~ Sod{r= AP}

We mvestigate the effect of increasing z by 11n S

Fz=z+1)
= { substitution }
= AT

Hence, {r = A"} z:= 2+1 {Fs}. Assuming Fy A P, A T+ B, we have

58 QGeneral Programming Techniques

Aﬂ-l

= [calculus }
Ax AT

= {~A}
Axr

from which we conclude
(BEAP As# Blri=Asr{r= A"} z:=2+1{FR}
The invariance of Py, ie.,
{Po AP Az+#Blri=Axr jz=azt+l{P}
is easily proved and we obtain the following solution for ezponentiation

{var = : nt;
r, o= 1.0
{invariant: Py A Py, bound: B —z}
idos # B
—‘*{Pu /\Pl /\$$—LB}
Ti=T% AT g4l
{Fy A P}
od
{Py A P{ A z = B, hence, r = A%}
]
{1' = A8 }
‘This program has time complexity O{B). In Section 4.4 we derive a sofution that has
time complexity O(log B).
Constants are usually denoted by capital letters, and we often use the same letter :
1n lower-case for a variable that replaces a constant. .

As o final example, we derive a solution to summation, which is specified below. To r
show how exercises should be worked out, we present a ‘model solution’ to the problem.
Here is the specification:

[con N :int {N >0}; f: array [0..N)}of int;

var g :int;

summaliion

{zw(ﬂi:0_<_7.<fo.i)} :
Il :

Replacing constants by variables 59

The quantification that appears i the post-condition has two constants: 0 and V. Let
us replace N by variable n and propose invariant

Po: z=(81:0<i<n fi)

Then, by construction, g A = = N implies the post-condition. Summation over an
empty range equals 8, hence, P is established by n, 7 == 0,0. We irvestigate an increase
of n by 1 and we derive, assuming Fy A n# NV:

(Z1:0<1i <nt+l: fi)

= {split off i =, 0 < n < n+l: see below }
(Ti:0<i<n: fi) + fn

= {BR}
z+ fn

Evidently, 0 < n is needed in the derivation above, which must be added to /. From
this derivation we conclude

{PBAo<nlai=ga+ fn {Plr:=n+l)}

As a bound funtion V—n seems appropriate; for the proof of termination we strengihen
By with n < N as well. We now show how the solution is presented.

Solution:

Replacing constant NV by vaniable n gives rise to the following invariants.

5 z=(Z1:0<1<n fi)
P. 0<n<N

Proof 0:

{Po A P)(n,z:=0,0)
= { substitution }
0=(Zi:0<i<0:fi}ADLSOLN
= {0 is identity of +}
0=0A0<0<N
= { predicate calculus }
0N

60 General Programming Techniques

Proof 1: Assuming o A PLAn# N,

(E2:0Z 1 <ntl: fi)

= {splitoff1=n,0K n <ntl}
(Ee-0<i<n fi)+ fn

= {f}
T4 fn

and

0<n+1<N
= [P}
nE N

Proof 2:

PﬂAPI An=N
= [definition of P}
z={Ri:0<1 <N fi}

Proof &
P
= { definition of P; }
N—-—n>0
and
N-(n+1)<C
4= { calculus }

N—-a=0C

Replacing constants by variables 61

Together with these proofs, the following annotated program soives summation.

fvarn:int; {N > 0}
n,z:=00
{invariant: Fy A P|, Proof 0, bound: N — n}
don# N
wr {Py A Py A n# N}
z:=x+ fn
n=an+4+1
{Fs A P, Proof 1}
od
{z=(%7:0< 1< N fi}, Proof 2, termination: Proof 3}

1
{z=(2i:0<1< N: fij}.

Some of the proofs presented above are really trivial (ef. Proof 2 and Proof 3) and
they are omitted in other examples.

Verify that replacing constant 0 by variable n leads to invariants

Pp: z=(Ti:n<1<N:fi)
P- 0<n<N

to which the following program corresponds:

[var n : int;
n,z:=N,0
;don#£0
— z=g+ fln-1)
in=ael
od

62 General Programmng Techniques

Exercises

Derive solutions for the following programming problems.

0. [con N :mt{N > 0}; f: array|0..N)of bool;
var 7 : bool;
g
{r = (3i:0<i< N fi)}
I

1. [eon N :mt {N > 0}; f : array{0..V) of int;
var t : bool;
5
fr=(Vi:0<i< N: fi>0)}
I

2. ffcon N :int {N > 0}; f: array [0..N)of int;
var v : 1at;
S
{r={maxi:0g1<N: fi}}

J-

3. [con N :int {N > 0}; f . array[0..N) of int;
var r:int;
5
fr={#1:0<1<N: fimod2 =0)}

I

4. fcon N, X :int {IV > 0}; f - array [0..N)}of int;
var r:mt;
S
fr=(Zi:0<e< N faxX")}
Il

5. [[con N :mt {N > 1}; f . array[0..N) of int;
var 7 mnt;
S

{r=(m&xi:{3§z/\i2<N?f'(iz))}

J-

Strengthening mvariants 63

4.3 Strengthening invariants

When an invariant for a repetition has been chosen, the termination requirement guides
the construction of the statement of the repetition. For such a candidate one applies
the proof rules. This may lead to an expression F which cannot easily be expressed
in terms of the program variables. A way to deal with this situation is to mtroduce a
fresh program variable and an accompanying invariant stating that the variable equals
E. Of course, the fact that this new invariant has to be established and kept invariant
may pose obther problems. We illustrate this point with some examples.

As a first example, we consider the Fibonaccl function fib, defined by

fib.0 =0, fib.1 == 1, and
fib.(n+2) = fib.n + fib.(n+1) forn 20

‘We are asked to derive a program for the computation of fib.N, i.e., we have to solve

[con N :mnt {N 2 0};
var x : 1ni;
Fibonace

{z = fib.N}
I

and we propose as invariant Fy A P;, where
By: z=_£8bn
F,: 0<n< N

which is established by n,z :=0,0.

An inerease of n by 1 leads to expression fb.(n4-1) which cannot be easily expressed
m terms of ¢ and n. Therefore, we mtroduce variable y of type int and invanant @
defined by

Q- y=fib(n+1)

The strengthened invariant Py A Py A () is established by n, 3, v:==0,0,1.

The invariance of F; 15 now easily realized: from ¢ we infer that z:= y estzblishes
By(n:=n+1).

For ¢(n := n-+1) we derive, assuming 5y A P A Q:

ot res

64 General Programming Techniques

fib.(n+2)

{ definition of fib, n > 0}
fib.ne 4 fib.(n+1}

{Pyand }
z -y

il

This leads to the following solution:

{varn,y :int; {N > 0}

n, o,y 0,0,1

{invariants: Py A P| A Q, bound: N — n}
don# N

— &, Y=y, T4y
=il
ad
{x=fib.N A y=fib.(N+1}}

f
{z = fib.N},

a program that has time complexity O(N). In Chapter 5 we derive a program for
Fibonacet that has time complexity O(log N).

As a second example, we derive, given array f{0..V), a program for the computation
of the number of pairs (¢,7) for which 0 <1 <3 <N A f2 <0 A f.9 > 0. A formal
specification is

[con N : it {N > 0}; f: array [0..N) of int;
var r :int;
S

{r:(#z,j:051<j<N;f.z'_<.UAf.jzﬂ)}

I
Replacing constant N by variable n gives rise to invariants

Foo r=(#4,7:0<i<y<n: fa<0A fj>0)

Strengthening invariants 65

P 0<n<N

which are initialized by n, 7= 0,3, since number-of quantification over an empty range
15 0. Assuming Py A P, An #£ N, we have

(#r,7:0<1<j<ntl: fa<OA f520}
= {split off 7 =m}

{(#4,7:01<y<n fiS0Afi20) + (#1:0<i<n fa<OAfn20)
= {F}

r4+(#i:0<i<n: fi<0Afn>0)
= { case analysis }
[if fa<0
Jr4+(#1:0<i<n: f1<0) if fn>0

{introduction of s with invariant), see below }

T if frn<t
r+s ffrnz>0

l%

where ¢ satisfies
Q: s={#H:0<i<n . fag0)

Substitution of n = 0 yields that @ is established by n, s:= 0,0. For the invariance of
@, we derive, assuming P, AQ An # N,

(#i:0<i<n+l. f21<0)
= {splitoffi=n,0<n<ntl SN}
(#i:0<i<n:-fr<O)+#£.(fn<)
= {Q}
s+F(fngd
= { definition of # }

$ if fa>0
s+1 iffn<g0

These derivations yield a program that solves the problem:

66 General Programming Techniques

fvarn,s:int; {N > 0}

n,r5=0,00

{invariant: Py A P{ A Q, bound: N —n}

idon#£ N

—~ {PBAPAQAR#N]

if fn<Q—skip
ﬂf.nZO—#r::r»{«s
f
{FB(n:=n+1) AP, AQ AR # N}
if fon > 0 — skip
J fr<0— 5:=5+1

fi
{(PQ A P; A Q)(ﬂ..ﬂ' n—{-i)}
ini=n-l

od
i

{r=(#157:0<1<j<N:fig0A fj20)}
The reader may verify that the two selections

if fon <0 —skip
[]f.nZO«wr::r—{—s
fi

df fono > 0 — skip
Bfn<0—s:=35+¢1
fi

can be replaced by

iff.n<0 —3 51z 541

[fin=0 71 5:=rts s+1
Jfn>0—r=rtg

fi

due to the fact that Py A P, A Q A n st N can be used as assumption for all the
derivations,

In the cglcuiations we derived that the value of (#1:0<i < n: fr <0) is needed
for the invariance of P, We could have decided to introduce another repetition in which

Strengihemng mvariants 67

this value 15 computed, i.e., a repetition that establishes s = (#::0 St <n: fa 50}
This naive approach leads to an O{N?) algorithm instead of the O(N) algorithm
presented above.

Finally, we mention that the introduction of variables is always based upon some
reasoning or derivation. They are not introduced by mamc.

In the following exarple we consider the problem of the maximal sum of the ele-
ments of segments Alp..g) of a given integer array 4. A formal specification for this
problem is

fcon NV :int {N > 0}; 4 array [0..N)of int;
var T ; int;
mazsegsum
{r=(maxp,¢:0<p<g<N: (Zi:p<i<qg:Ad)}
I

To make the expression in the post-condition more manageable, we define,
for0<p<gsN:

Spag={Z1:p<i<g:Ai)
Post-condition R becomes
R: r={maxp,¢:0<p<qg<N:3pg)
Replacing constant N by variable » yields invaniants Fp and Py:
Py r={maxp,q:0<p<Lg<n: Spg)
FP:0g<ns N

which are initialized by n,7:= 0,0, since 5.0.0 = (. Assuming Py A P, A n# N, we
derive

(maxp,q:0<p<g<n+tl:Spyg)
= {split off g = n+1}

(maxp,q:0<p<g<n: Spg) max (maxp: 0 < p < atl: Sp(ntl)
= {R}

rmax (maxp:0<p<ntl: Spi{ntl))

Af this point it seems appropriate to introduce the variable 5 and accompanying in-
variant

68 General Programming Techniques

s=(maxp-0<p<n+l:Spintl))

However, for n=/N {which is not excluded by P;) this predicate is not defined. Replacing
all occurrences of n by n—1 yields an expression that is defined for all n, 0 < n < N.
Thus, if we define additional invariant Q@ by

@ s=(maxp:0<p<n:Spn)
then Q(n:=n-1) equals the relation that is needed, 1.e.,

(maxp,g:0<p<g<ntl:Spyg)

{ see previous derivation }
rmax {maxp: 0§ < p < n+l. Sp.(nt+l))
= {assume Q(n:=n+1)}

TIaxs

This leads to a sofution of the following form

[varn,s:int;
‘establish Fo A P, A Q'
idon# N
~+ ‘gstablish Q{n:=n+1)’
;T T maxs
ini= ekl
od
1

where ‘establish Q(n = n-+1}' is formally specified as

feon N,n,7:mnt; A array [0..N) of int;
{Py A P, An#N)
var s : int;
{Q}
s
{Q(n:=n+1)}
I

For Q{n = n+1), we derive, assuming P, A P, A Q A n # N:

Strengthening invanants 69

(maxp:0<p<nil: Sp(ntl)
= {split ol p=n+1,0 < n+1 € N}
(maxp:0<p <n.Sp(n+l)) max S.(n+1)(n+1)
= { definition of 5, summation over an empty range is 0}
(maxp:0< p<n:Spint+l)) max 0
{ definition of S}
(maxp:0<p<n.Spn+ An) max0

il

'

i

{ + distributes over max when the range is non-empty, 0 < n }
{{maxp:0<p<n;Spn)+ An) max0
= {@}
(s + An)max0

From this derivation it follows that Q(n:= n+1) is established by s:= {5+ A} max0.
Thus, we arrive at the following non-annotated solution to mazsegsum:

[var n,s: int;
n,r,3:=000
don# N
— s:=(5+ An)max0
T=rmaxs
iz el
od

JI

A nice solution to a not $o simple problem. In order to get used to the calcuiations that
are performed in such derivations, the reader should thoroughly analyse the derrvation
of this program. In these derivations we used the following properties of §:

Sna=0 fod<n<N
Spint+l)l=Spn+An for0<p<n< N

We summarize these examples by showing the general pattern of the derivations
carried out. Post-condition R is of the form

R, r=FN
for some natural number N and function F defined on [0..N|. The choice of invariants

P{}:’ 7‘=F.'n.
Pll E}SngN

70 General Programming Techniques

feads to a program of the form

[var = : int;
n,r=0F0
don# N
— ‘establish r = F.(n+1)'
=kl
od
I

and a calculation of the form

F(n+1}
= { calculus }
Fn®Gn
= {R}
TrRGn
{ introduction of variable s and mvanant @ }
TS

i

where s satisfles

Q@ s=Gn

Then r:= + @ s establishes Fy(n:= n-+1). Computation of G.(n-+1} may similarly
lead to a relation of the form G.(n+1) = G.n ® H.n in which case another invariant

15 introduced. This process continues unitil (we hope) an expression comes up that 15
easily computed.

Sometimes, as in the derivation of marsegsum, we obtain a relation of the form
F{n+l) = FadG.(ntl)
in whicl case
Q@ s=Gn

is mtroduced and the statement establishing @(n:= n+1) precedes the statement es-
tablishing Fp(n = n+1).

Strengthenipg Invariants 71

Exercises
Derive solutions for the following programming problems.

0. feon N :int {N > 1}; A array {0..N) of int;
var v : inf;
S—
’ I{*F/M (maxp,g:0<p<g< N :Ap— Aq)}
I
1. flecon N :int {N > 1}; A : array [0..V) of int;
var r:int;

- Xeft po gy
S (M—Xf/ 1 V.J..f

{r=(#pq:0<p<q<N:ApxAqg>0}}
I

2. Derive for integer N, N > 1, and integer array A[0..N) & program for the com-
putation of the maximal sum of the nen-emply segments of 4.

3. [con N :int {N > 1}; 4: array [0..N) of int;
var r : int;
S
{r=(maxp,q:0<p<g<N:(Ap— Aq)*)}
I
(4. [[con N :int {IV > 0}; 4 : array [0..N) of bool;
" wvarr: bool;
)
{r=p:0<p<N;:(Vi:0<i<p: Ai) A{¥ViipLi< N =Ad)}
I

5 Let N > 0 and let AJ0_.N) be an array of integers. For 0 < p < ¢ S N, the credit
+ 'of Alp..q} s defined by

creditpg=(Fi1:pSi<g: A1 >0~ (Fi:p<i<g: Ai<0)

Derive a program for the computation of a segment of A with maximal credit.

72 General Programming Techniques

—

g fcon N it {N > 0}; A array|0.N}ofint;
var T . int;

5

{r=(maxp,q 0<p<q<N:(Mi:pSe<q: Ad))}

I

4.4 'Tail invariants

In this section we discuss tail recursion. We used a form of tail recursion when we
discussed the greatest common divisor algorithm in Section 2.5. That algorithm is
based on properties of the function F defined for positive integers = and y by

F.z.y = zgedy. These properties are

Frzz=ax

[Flz—y)y fz>y

Foy= 1 Fz{y—z) Hy>=

which is an example of a so-called tail recursive definition. A repetition for the com-
putation of F.A.B is obtained by choosing as invanant

Fxy=FARB

as we did for the algorithm m Section 2.5,

As another example, consider

[con N :int {N > 0}; A. array[0..N|of int;
var v int;
5
{r=(max1:0<1<N: A}

J-

Define, for 0 < z < y < N, the function I by

Fay=(maxt:z<1<y: Ad)

Tail invanants 73

Then the post-condition of this specification can be written as
R »r=FO0.N
and I has the following properties:

iy z=y = Foy=Ax

Fay=F(z+l)y ifAz< Ay

H z<y =
(i) z<y { Faey=Faz(y-1) f Ay< Az

A repetition based on (i) and (ii) has invanant
P: Foy=FONAO<Sz<y<N
and its coding 1s straightforward;

{var z,y : int; {N > 0}
=0, N
{invariant P: Flz.y = FON A0S e <y < N, bound: g ~ z}
idox#y
i Az < Ay — 2= 4l
l Ay< Az —y:=y-1

fi
od
{P Az =y, hence, A.x = F.O.N}
v Ar

J

{r={(max::0<i<N.Ai}L
The general setting of tail recursion 1s as follows. A function F is given for which

(i) Fo=haza if bx
(i) Fo= F(gz) if =bx

and one 15 asked to derive a program that establishes » = F.X for some X, Taking

74 General Programming Technigies

P Fz=FX

as a so-called tail invariant, yields

|| var ;
z:i=X
{invariant: F.z = F.X}
vdo —b.z — z:=g.7 od
7= Al

|

{r=FX}

provided that the repetition terminates.

Solving 2 problem by tail recursion amounts to finding a suitoble function F. A special
case of tail recursion is the following.
An associative operator @ is given with identity e. A function G has the following

properties:

{0y Ge=a if bz
(1) Gz= hzx®G.lgz) if bz

and one 1s asked to derive a program with post-condition r = G.X. This problem may
be solved by a tail invariant of the form

P: GX=r®GCGrx
which may be interpreted as
‘the result’ = ‘what has been computed’ @ *what still has to be computed’

Tnvariant P is stablished by r,z:= e, X. Furthermore, if b.z holds, then

GA=710CG=z
= {b.z, use (0) }
GX=r®a

and, for ~b.z

Tail invariants 75

GX=r@&CGx
= {—b.z, use (1)}
GX=rdhzd G (g3))
= { ® is associative }
GX=(rdhz)®dG(gx)
= { definition of P}
Plrz=r@hzgzx)

This yields the following program scheme

If & is associative and has identity e, and @ is such that

{0) Gz=a if bz
(1) Gaz=hzdGgz) if bz
then

{true}

[var z;

z, 7= X, e {invariant: G.X = r & G.x}
ido ~6.x — x, 7= g3, 7D h.z od
{GX=rma}
r=rda

J

{r=GX}

provided that the repetition terminates.

Nc')ts_a tha.f; 1n almost each line of the derivation above ‘G.X =' occurs. When applying
fI':azl invariants, we only derive the relevant parts, leading to derivations of the following
orm;

If b.x holds, then

TBGx
{b.z, use (0} }
rBa

I

and, for -0,z

76 General Programming Techniques

rp Gz
= { bz, use (1)}
& (hz®G.(g.5)
{ @ is associative }
(rhx)®G.g.%)

We illustrate tail recursion by two examples.
For natural number x, G.x 1s the sum of the decimals of z, defined by

Go=0
Gz =zmodlt+G.(zdiviD) forz>0

We are asked for a program with post-condition r = G.IV for natural number N. The
program scheme presented above yields as tail mvariant

Py: GN=vr+Gux

and as a lower bound for z, we add

P 0<z

For x =0, we have r + G.x = v and for z > 0:

T+ G
= { definition of &, = > 0}
r+ (zmod 10 + G.(z div 18})
= { - is associative }
{r + rmod10) + G.(zdiv10)

leading to

[[var z :int; {NV Z 0}
z,r:= N,0 {invariant: B A Py, bound: z}
sdoz#0— 2z, r=rdivid,r +zmod1l od

!
{r=G.N}

Note that a bound function 1s specified to satisfy the termination requirement. Termi-
nation follows from

zdivil <z

11

{ hending for the definition of div }
W {zdivit) < 10szx
{ calculus }
zmod 10+ W (zdivid) < zmod10+ 10 =2
{ definition of div and mod }
r<rzmodl04 10=*x
qu {zmod10> 0}
z<10*x

14

il

I

{ calentus }
O<z

As a second example we reconsider ezponentiation {cf. Section 4.2}, specified by

fcon A, B:int{A>0 A B >0}
var T :nt;
erponentiaiion
{r= A%}

I

Tail mvariants

For exponentiation, Le., for function G defined by G.z.y = o7, we have,

forez>0Ay>0

(0) Gro=1
(1) Gay=1+G(r+z).(ydiv2) if ymod2=0
Gazy =1+ Gax(y—1) if ymod2 =1

A tail invariant corresponding to G is

Py: vazl = 4P

and a [ower bound for y is given by

F.oo< ¥

From the recurrence relations for G, we infer
PAy>0Aymod2 =0 = Polz,y = o+, ydiv)

and

77

e ET et e o ot e R

78 General Programming Techniques

PoAy>0nymod2=1= Fylrye=r*+z,y-1)

resuiting in

[var z,¥ : int; [A>0AB 20}

Ly 1L AR

{invariant: 7 = z¥ = A% A 0 <y, bound: y}

idoy#0

wr if ymod2 =0 — 5,y:=c*+z,ydiv

fymodZ=1 nry:=r1%z,y-1
f

od

fraa¥ = AP A y =0, hence, 7 = A%}

|
{r= AP}

Since y halves at least every other step of the repetition, the time complexity of this
program is O(log B).

The purpose of this section 1s not to explain how a specific problem can be formu-
lated in terms of F or G. In practice, we do not always define ' or G explicitly. For
nstance, the exponentiation program would be introduced by
“We choose a tail invariani P, defined by

P vzl = AP

and we choose as guard y # 0.
In fater chapters we will see many applications of the tail invariant techmgque.

Exercises

0. Derive a program for the computation of A ¥ B where A and B are natural
numbers. Apart from div2, mod?2, and *2 only addition and subliraction are

allowed.

L. Derive a program for the computation of the number of factors 3 of natural
positive number N.

2. Solve

[con N, X : int {NV > 0}; f - array [0..N)of int;
var r ! int:
S
fr=(Z1:0<i<N: fas XV}
I

by defining for0 < n < N
Gre=(Bu:nLr< N fis X)

and deriving a suitable recurrence relation for G.

f

—
3. ?Ihe function fusc is defined on the natural numbers by

fusc.0 = 0, fusc.l == 1
fusc.{2+n) = fusc.n, and
fusc.(2en+1) = fusc.n + fusc.{n+1) forn>0

Derive a program for the computation of fusc. ¥, N > 0.
{Hint: compute fusc.78).

;”' &olve

H i
H 4

feon N, X : mt {N > 0}; f - array [0..N) of int;
var r ; bool;
5
{r=3i:0<i<N: fi=0}}
I

by defining for 0 <n < NV
Gn = (3iin<i<N . fi=0)

and deriving a suitable recurrence refation for G.

Tail invariants

79

80 General Programming Technignes Sumumary 81

5. An h-sequence is either a sequence consisting of the single element Dorit s a 1, Tail invanants
followed by two h-sequences. Syntactically, A-sequences may be defined by

: The general setting of tail recarsion is as follows. A function # is given
(hy = 0 | 1{h{R) for which

X Fz=hz if bz

Solve :

Fz=F(gz) if -bx !

1 > 0}; A array [0.. 2N 41} of [0..1f; . . ;

fcon N :int {N 2 0} array | C and one is asked to derive & program that establishes r = F.X for some

var r : bool; X. Then Fe=FX isa good candidate as invariant for a repetition that
S

solves this problem.
{r = As an fi-sequence} A special case of tail recursian 1s applicable to the problem of computing

I G.X, where & is such that
: -~ (0) Gz=a if b
L 4.5 Summary i (1) Gz=hzx@®G(gz) if -bs
in this chapter we discussed some general techmques that show how a suitable invaniant ™ m which @ 1s an associative operator with identity e. Then G.X =r@ .z

: : is good candidate for an invariant,
may be derived from a given pre- and post-condition. We summanze these ideas. E an

S Exercises
) Taking conjuncts ;
When the pest-condition is a conjunction of predicates, take some of Derive solutions to the following programming probiems.

the conjuncts as invariants and take the negations of the other conjuncts

: : g lecon N :mmt{N >1 + A array{0..N)of int:
as guards for a repetition. As a special case, one can try true as invariant il {N 21} val Jof int;

1 - ar b : bool; :
: and the negation of the post-condition as guard. VS 00 ;
| {t = (8p,q:0<p<g<N Ap-Aqgs2)}
Replacing constants by varables. I
- .
The replacement of one or more constants by variables yields a possible] _ /1”][con VN 1t {N > 1}; A : array [0..N)of int;
invariant for a repetition. E v;r T int;
: {‘1‘:(#z:052<N:(Vp:i5_p<N.A.iZA.p))} i
Strengthening invariants. : I
When a choice for an mvariant has been made, calculations may lead 2. The function A is defined on the natural numbers by
to an expression [that is neither easily computed nor easily expressed in 1. /
terms of the program variables. The extension of the state space Wi,th a i) A0=1
variable and the addition of an invartant that expresses that this variable s Af2n) =2+ An, forn> 1

equals £ may help obtain a solution to the problem.

Af{2ntl)=n+ A(2n), forn >0 g

82

Generai Programmng Techmques

Derive a program for the computation of AN, N > 0.

- 3 fleon NV:imt{N = 2}; A: array [0..N) of int;

-

var z,¥ ! int;
S
{0<z<y<N AlAz+Ayl=(maxp,¢:0Sp<g<N:{Adp+Aqgl)}

I

4. feon N :mt {N > 2}; 4. array[0..N}of int; :

var r : int;

:

[r=(Spq:0<p<g<N:(Ap—Ag))}

- -

P -
5. Derive an Q{log N} program for the computation of {(¥1:0 <1 < N . A') where
N and A are natural numbers,

T 6. ffecon N :mt{N >0} 4. array{0.V) ofint;

var r : inf;

5
[r={(#k:0SESN:(Vitk<1< N Ai20)}}
I

7. fcon NV :ipt {NV 2 1}
var z : at;
Fibolucer
{z={Ni:0<1 < N :fibs * b {N—1)}
Ii
where fib is defined by

fib.0 =9, ib.l =1, and
fib.(n42) = fib.n + fib.(n+1) forn 2 0

(Hint: replace both occurrences of ¥ by =n).

Chapter 5

Deriving Eflicient Programs

5.0 Introduction

In this chapter we present two examples of efficient programs, The chapter may be
skipped at {irst reading.

In Section 5.1 we present an efficient program for the computation of Adiv B and
Amod B. In Section 5.2 we show a technique that 15 applicable to a class of afgorithms.
In that section we assume that the reader 1s familiar with matrix multiplication.

Both examples are not simple and one of the purposes of this chapter 15 to show
how one can reason about these programs i a non-operational way.

5.1 Integer division

Our first example 15 the derivation of an efficient solution to integer divisian, specified
a8

feon A, B:mt{A>0A B>0};
var q,7 :1nt;
divmod
{g=AdivB A r= Amod B}
¥
in which apart from div 2, mod?2 and *2 {that are usually provided by machines) only
addition and subtraction are sllowed. As pomted out in Section 4.1, post-condition

may be written as

R A=g¢g+B4r A0<r<B

84 Deriving Efficient Programs

In Section 4.1 we chose as invariant A = ¢ * B+t A Q<7 leading to

qr=0A4
dor>B—gqr=g+lr—B od

a program whose execution takes Adiv B steps.
1t is quite easy to transform it info a program that is twice as efficient, by dividing
by 2 # B instead of B. Such a transformation leads to the following program.

gr=0A

{A=q*2+B+r AO<T}
;dOTZE*B—rq,r:=q+1,r—?.*B od
{Amq*Z*B+rAO$r<2*B} /
1gi=g*2

[A=qxB+r AO<T<2=B}

f B <t —qr=¢+17-B

| r<B —skip

fi

(A=¢+B+r A0<r<B}

Execution of this program takes $ * (A div B) steps. Of course, we can apply this idea
apgain, leading to a program that is four times as efficient as the original program {at
the price of two selections). In general we may start with a division by 2%+ B for some
k > 0. This idea leads to an invariant that is obtained from the post-condition by

replacing constant B by vanable b:
P A=gxb+r A0Lr<b

To guarantee b = 2* % B for some natural £, we introduce variable & as well and define

mvasiant P by

P b=2%+BAr0Zk

P, A P, 1s established by a repetition for which

Q- A=gxb+trAlLT Ab=2¢+BAOZLE

is an invariant and 7 > b the guard. Its coding is straightforward:

g b ki=0,4,8,0
dor>b-sbki=bx2,k+1 od

Integer division 85

Tkaig part has time complexity O{log{Adiv B)), since & is 0 initially and has the
mnimum 3 for which 2* > Adiv B as its final value.

As guard of the next repetition, we choose b # B. To obtain an efficient algorithm

-we investigate the effect of b:=bdiv 2 and we derive

BAaP AR
= { definitions of P andP, }
A=g#b+7 AOST<bAb=2"+BA0OSkAD#B
= {calculus }
A=q*b+r/\05r<b/\b=2"*3/\ 1<k
= { heading for b:=bdiv2}
A={g+D+(div)+r A< <25 (bdiv2) A bdiv2=2"'%8
AO<k-1

Hence,

{Po AP AbZ£B}
q,b k:=qg%2 6div2 k~1
{A=gabtr ADST<2ZxbAb=2+B A0<E}

Starting with the last line it is easy to establish Py A Py;

{A=gsb+r A0S T <2+ A b=224BA0%5k}
if r < b skip{Fy A P}
frbt—gqr=q+l,7—b{F A P}

fi

{Ps A B}

Thus, we arnive at the following program:

fvar b,k : int;
g,r b k=04, B0
idor>b—bki=0%x2k+1 od
jdob# B
— g, b ki=qgx2bdivZ k-1
Hr<b—skiplr>b—gr=q+l,r—b i
od

L S i

[

86 Deriving Efficient Programs

in each step of the second repetition & is decreased by 1. Its final value is 0, hence
execution of the second repetition takes log(A div B) steps as well. We conclude that
this program has time complexity O(log(4 div B)).

Variable & plays a specific role. No other variable depends on & and leaving out
this variable does not affect the algorithm. Bub & does play a role, since the mvariant
(and, hence, the correctness of the aigorithm) depends on &, When we remove &, what
would be an invanant of the resulting program? The solution is not difficult: the above
program shows the existence of integer & such that all relations are satisfied. Replacing
invartants P; and @ by

PP,: (Ak-0<k:6=2%B)
QQ: A=q+b+7A0<r A(Zk:0<k:b=2%DB) /
results in a program in wiich & does not occur any more:

[AZ0A B >0}
{var & : int;

qrb=0A4A8

idor > 66— b:=06%2 od

dob# B

— g, b= gx2,0div2
ifr<b—skip[|r>b— g r=g+l,r—06fi
od

I
{g= AdivB A r = Amod B}.

It 15 possible to derive this program in terms of Py, PP, and QQ right from the
beminmng. As a disadvantage one has to perform all calculations with an existential
quaniification. Moreover, the efficiency considerations cannot be phrased in terms of k
any more. The mtroduction of variable &£ makes it easier to reason about the program,
and as & does not actually occur in the final program it is called a ghost varwalble,

Finally, we remark that the correctness of the program presented above is difficult to
grasp without its derivation. Nevertheless, it is essentially the same division algerithm
that is taught in pnimary school.

Integer division

Exercises

0. Derive an O{log V) aigorithm for square root:

feon N :int {N > 0},
var z : int;
square root
{2 < N A (z+1)* > N}

3

by introducing variables ¥ and & and invanants

B B2<NA(zty)>N
P:oy=22A0<k

1. Derive a program that has time complexity O(log V) for

feon N :int {N >1}; f: array[0.N|ofint {f0 < f.N};
var z : inl;
5
{0<z <N A fz< flz+1)}
Il

by introducing vanable y and invariants

By fa<fy
P;L OSE<ySN

2. Solve

[con A, B : it {8 > 0};
var ¢, 7 : inf;
divmed
{g= AdivB A r = Amod B}

I

87

88 Deriving Efficient Programs

5.2 Fibonacci

Our second example is the derivation of an Oflog N} program for Fibonaeci (cf. Section
4.3), specified by

[con N :int {N > 0}
var ¢ mt;
Fibonacca

{z = fib.N}

I . /
where fib is defined by !

fib.0 = 0, fib.1 =1, and
fib.(n+2} = fib.n + fib.(n4+1) forn >0

In Section 4.3, we chose as invariant £ = fib.n A y = fib{n+1), leading to

{N =0}
[var ¥, 7 : Int;
n,x =001

idon# N
— 3, Y=y, Ty
nr=n+1
od
I
{z = fb.N1,

a program that fias time complexity O{N). We derive from this program a more
efficient ane by a rather general techmque exploiting the fact that the expressions
assigned to = and y in the multiple assignment =, y:= y, 2-+y are linear combinations
of z and . In terms of matrices this assignment is denoted as

()= D))

and the algorithm may be denoted as

Fibonacet 89

[var y,m : int;

< (3)-(2)

.don#N
-(3)-(13) ()
n=ntl
od
N
{($)=($ i) (?)z(ﬁbﬁ(ijvfiz})}
]l:cw—»ﬁb.N}.

An mvariant of the program for Fibonacciis

()= (0)

and its post-condition 15

zy_(01)N a
y) \11, 1
In Section 4.4 we developed an Olog N} program for ezponentialion, based on a tail

invariant. A similar approach to the computation of (? i) ((1]) 18 appropriate,

UusHg mvariants
N

o1 0 A 4

Fo- (1 1) (1)"A (y)
P 0<n<N

which are initialized by n,z,y:= N,0,1, A:= ({; i) and for which we have

Fiann=0= z=1{bN A y=1Hib.(N+1)

90 Denving Efficient Programs

This leads to the following program:

. {9l
n‘m,y.uN,O,l,A.-(1 1)

don 0
— ifnmod2=0— A= AxA;n=ndiv2

{}nmod2=1—*($):=A(m);n:wn««»l
y y

fi
od
{z = fib.N}

A next step 1s the elimination of the matrix operations. We compute some powers of

(21)

This {eads to tie conjecture that all these powers are of the form (E; a-i:-b) Indeed,

a b a b {r 4
b atb b atb] \ g pie
where p = a? + b? and g = ab + ba + . Hence, matrix A may be represented by two

) . _ a b
integers: pair {(a,b) represents matrix b oath) Then

A= A+ A corresponds to e, bi=axe+brbaxbtbratbxb

and

(:) '.“—“A(;) corresponds to T,y=axx+bhxybrztarytbry

Fibonacci 91

The final solution is presented below.

{N =z 0}
([vara,b,n,y: int;
e bz, y,n:=0,1,6,1, ¥
idon#0
-~ fnmod2=0—gbi=axa+bxbaxbtbrat bbb n:=ndivi
frmod2=1—>gy=acrx+bxybrrstary+bxy;n=n—1
fi
od
{z = ib.N}
I

Needless to say that tius program cannot be easily understood without its derivation.

Exercises

Solve

0. fcon A, B, N :int {N 2 0};
var = : ik,
S
r=(i:0<: < N: A+ B}
¥

1. feon Nt {N > 1}
var 3 :inb;
Fiboluces
{z={(Zi:0< 1< N:fib.ix*fb{N-i)}
1.
where fib is defined by

fib.0=0, fib.l = 1, and
fib.(n+2) = fib.n + Gb.{n+1) forn > 0.

Chapter 6

Searching /
6.0 Introduction

Many programining problems can be viewed as a so-called searching problem. For
mstance, the square root problem of Section 4.1 may be formulated as *search for the
maximal natural number ¢ for which i* < N7, 1.e., establish post-condition

r={max1:0< 1A <N :7)
it may also be formulated as
g={mint: 0 <A+ > N i)

t.e., search for the minimal natural number + for which (i+1)2 > N. In Section 6.1
we discuss a simple program called Linear Search. The Bounded Linear Search is
presented in Section 6.2. In Section 6.3 we consider a more efficient scheme which is
applicable to a large class of search problems. That program is known as the Binary
Search. In Section 6.4 we discuss a less well-known program scheme called Searching
by Elimination,

6.1 Linear Search

We consider the following problem. For integer variable z, 6.x is a boolean expression
such that

(Fi:0<1:b4)

An example of such an expression 15 (o1} = (z+1) > N. We are interested in the
smallest natural ¢ for which b1 holds. A formal specification of this problem is

Linear Search 93

[var z : int;
{(Fi:0<d: 040}

Linear Search
[z={mini:0<i A ba: i)}

I
We rewnite the post-condition:
R: 0z AbxA (Vi:0<z:<x-=ba)

A possible invariant 15 obtamed by the technique of taking a conjunct: we define P by

P OSzA(Vit0<i <z —ba)

which s initialized by z:= 0. As guard we choose, of course, .. Investigation of
=z | leads to

Plz=xz4+1)
= { definition of P}
05z+1!\(\:’€:053<z+1:—:b.i)
4= { heading for P }
OSzA(Vi:ﬂS;(m-}-lr“ﬁb.i)
= {spliteﬂ‘z:m,@ﬁm(x«&l}
0<A (Vi:0$i<:r'—|b.i}/\ =b.x
= { definition of P}
P A -z

This gives rise to the following program:
z:=0;do=bz—r:=z41 od.

For a proof of the correctness of this program we still have to provide 2 bound function.

Note that we have not used the pre-candition yet. The pre-condition allows us to define
constant X by

0<X ALY

and we derive

P e T ey

94 Searching

P
=> { definition of P}
(Vi< A i< b}
= { predicate calculus: trading }
(Vi-0geAbiiza)
= {0<XAbX)
X>z

Hence, X — x 15 a suitable bound function for the program presented above. We
formulate our result as follows. \

Linear Search

[var = : mt;
{(Fi: 0K bd)}
=0

do—br—z:=sz+1od
{xz(minztOSi/\b.lti)}

Of course, the fact that U 1s a lower bound 15 not essential: the maximum @ for which
b.i holds is obtained by mitializing = with an upper bound and replactng z:=z+1 by
R R ¥

As an example, we solve the following problem.

[con N :int {N > 0}; A . array[0..N]ofint;

{A0 < AN}
var 7 :1nf;
k)

{r=(max:1:0<i<N A Az < A(i+1}:4)}
I

This problem can be solved by replacing constant N by variable n, an approach that
leads to a less elegant algorithm, as the reader may verify. Applying the Linear Search,
we obtain as solution:

Beunded Linear Search 95

St {{(3i:0 <1 < N Aid < A(i+1)), see Proof, apply Linear Search}
rim NV —1
wdo Ar 2 Alfr+l)—r=7r—10od
{r=(max1:0<:1 <N A Az < A(i+1}:1}}

Proof:
(Vi:0< 1< N Ad > A(i+1))

= { transitivity of > }
A0z AN

Hence,
AV AN = (Fi:0<1 <N Ad < A(i+1))

The program with its accompanying proof is all one has to provide as solution to the
problem.

6.2 Bounded Linear Search

The Bounded Linear Search 1s a solution to the following problem. Given integer N,
N > 0, and boolean array b[0..IV), one is asked to derive a program that assigns to
variable = the feast number 7 in [0..N) for which 5.7 bolds. If no such number exists in
this domain, N should be assigned to z. A solution with invariant

0z NA(Vi:0<i <z hi)
and program
z:=0idobz Ags# N — p:=z+lod

is not correct, since IV does not belong to the domain of b and £ = N is not excluded
by the invariant.

A formal specification of the problem 15

fcon N it {N > 0}; & : array|0..N} of bool;
var z : iat;
bounded linear search
{ze=(max1: 0<i< N ANV :0<3<1: b))}

J-

(BLL"B

95 Searching

When we define {(without, of course, actually changing &} b. N as true, the post-condition
may be writien as

R, 05a<s NANI:0< 1<z -bi) A bz

As explamed above, a repetition with —b.x as guard 1s not possible. When we take bz
as part of the invariant, it should be established by z:= NV, since NV is the only value for
which it is known that b has the value true. On the other hand, the first two conjuncts
of R require z:= 0 as imtialization. This ‘conflict’ 1s solved by the mtroduction of
integer variable y¥: we choose as invanant

Fi. 0 NAVi:0<i<z -=hi) A by

Then Fy 1s established by z,y:= 0, N and Py A z = y implies R. Hence, we choose
T # y as guard for the repetition and y — = as bound function. As bounds for y we add

P zsy<N

to the ipvamant. Then By A Pi Az #y = 0 < a < N, and, hence, b.z may occur in
the statement of the repetition. It 18 now easy to derive

PonFAnzdyn-ba = (P A P)z=o+l)
and

B AP AxyAbr = (B A P)y=x)
This leads to the folowing solution:

Bounded Linear Search

fcon N :int {N > 0}; b: array [0..N) of boof;
var « : nt;
[var ¥ : int;
z,y={ N
idox sy
—if mbr — D=4l
I bz—y=zx
fi
od
1
{z={maxi:0<1<N A (V3:0<7<1:=bj}:id)}

Il

o= N \/i-f,‘(:j,}d A ‘] ‘-Cf-{_{(ti;(}f’f-\{r\}:b.l:)

Bounded Linear Search a7

Exercises

Solve the following programming problems.

0. ffcon NV :int {true};
var x :at;
h
{fe={min1:0< A 2> N i)}

3
L. |con N :nt {NV >0},

Var « : int;
S
{:z:z(maxi:DSzATSN:i)}

J

2. feonN:mt{N > 2}; A array [0..N) of int;
{(3i,3:051<j<N:A.1—A.J$2)}
var r . int;

g
{rz(maxz:{}<z<.f\ff\A.(z’—l)-—A.zSQ:i)}

I

3. Derive a linear program for the Bounded Linear Search problem, based on the
invanant

m={maxz:n§:5NA(Vg:ngj‘(z‘—'b.j}:i)

‘Vhtllt is the disadvantage of this solution compared to the one presented in this
section?
4. fvarz:int:
{(Fi:1mt: b))
by
{bx A (¥iili| < [z} - =b.4)}
I

P

s

e

98 Searciung

5. Jcon NV :mbt{N = 0}; f: array{0.N)eofint;
var r :inf;
5 :\
{r=(maxi:0<:1 <N A(V3:0< <. fa#0):i0)}
8
6. fcon N:mt{N >1}; A, B: array{0..N|of int;
(A0 < BO A AN 2 B.N}
var r : int;
S
{r=(max::0<1< N A Az < Ba A Afi+1) 2 Bi+1) :4}}

I

6.3 Binary Search

For ascending and descending functions, searching may often be realized in a much
more efficient way than by an application of the linear search. For instance, it 1s much
casier to find one's telephone number in a phone book than to find a name, given a
telephone number. We explain the so-called Binary Search by solving

fcon N, Azint {N > 1}; f . array{0.Nlofint {f0< A< fVE
var z 1 1at;
binary search
[fzg A< fle+1)}
I

Note that, apart from f.0 < A < f.N, nothing is assumed about f.

“The post-condition is a conjunction of two predicates: f.z £ A, which 1s initialized
by m:= 0; and A < f.(z+1), which is mitialized by z:= N—1. As we did for the
Bounded Linear Search, we introduce a vanable y and we define mvariants Py and P,
by

By. fz<A<fy
P d<s<y<N

Then, on account of the pre-condition, £y A P is established by z,3:= 0, N. As guard
of the repetition we choose 2+1 # y, and as bound function we choose y—z. For any
h such that = < h < y, we have gy~ < y—z and A—=z < y-z, hence, both z:= A and
y:= l decresse y—z end both maintain P;. Furthermore,

Binary Search 99

Pyl = h)

= { substitution }
fRh<A<fy

< { definition of Fy !
Pu A f.h S A

and

Foly:=h)

= { substitution }
fe<A<fh

= { definition of Fy }
Band<fh

This leads to

{fO0S A< N}
[var ¥ : int;
o y=0N
{invariant: Py A Py, bound: y — z}
idoo+1 #y
— lvar & : mb;
‘establish z < h < ¢’
i fh<A ~z=h
fTA<fh—gi=4h
fi

od

J
{fr <A< flz+1)}

Since y -z 1s replaced either by y — h or by /& — =, the best choice for h s the middle
of {z.y], Le., {z+y) div 2. Indeed,

100 Searching

T < (z+y)divi<y
= {calculus }
z+1< (z+y)diva<y—1 Y
&= { div 2 is ascending }
2r+2< sty <Y -2
= { calculus }
z+2<y
{ calenlus }
z<y AztlFy
= { definition of P, }
Pinz+l#y

i

Hence, h:= (x+y)div?2 15 a valid choice. Substitution in the above algorithm yields

the solution:

Binary Search

{0<NAfOSA<fN}

z,y=0,N

idoatl#y

~ [[var fi : int;
hi= {z+y)div2
G fACA wzi=h
A< fh—y=h
fi

ad
{0<z<NA fx<A<f(z+1)}

Since y — = has initial value N and halves in each step of the repetition, the time
camplexity of this program is O(log N).

Binary Search 101

Variable h has been introduced to enable us to name a value between z and y. In
the program above £ 1s just short for {(z+y) div 2 and the only property of /i that is
relevant to the correctness of the program 1s & < b < y. This example shows znother
reason for the introduction of variables

Note that 0 < h < N, from which we nfer that [0 and f.N are not inspected
during the execution of the program. Pre-condition f.0 < A4 < fN s only used for

the mitialization of = and y. When tius part of the pre-condition is replaced by true
or, equivalently, by

JOSASFN V fO>A v fN>A

the post-condition is
0z<N A (fr<A<flz+l) v fO0>A vV fN>A)

We use this property in the following application of this algorithm, Let N > 1 and let
fI0..N) be an ascending array of integers. We are asked to derive o program for the

computation of the boulean value ‘integer A occurs m F[0.N)" A formal specification
18

fcon N A it {N 21}, f. array [0..N}of int |
(Vid:0<i<i<N. fi<fj)
var 7 : bool;
5
{r = (Hi:0<e <N . fi= A)}
I

In view of the remarks above, we define, since .V is not inspected, f.¥ = co {without,

of course, actually changing f). Then 4 < f.N holds and the post-condition of the
Binary Search is

R 0§;1:<N/\(f.:cSA<f.{m+l}vA<f.U}

At this point (and only herel) the ascendingness of f comes in. From R and the
ascendingness of f we infer

102 Searching
@ 0<i< N fi=4) = fx=A4A

Hence, we have

—

[con N, A:int{N z 1} f. array [0..N) of int {f is ascending};
var b : bool;
{var o,y : ing;
z,y=0,N
cdoztl #y
— |[var i : mt;
fui= (zt+y) div
RS A s pi=h
| A<fh-—y=h

fi
I
od
b= far= A
I \
{H = (Fe:0<i< N fa=A)} .

]
This program is also known as ‘the binary search’ It is an important algorithm and
every programmer should know this program and its derivation by heart.

As a final example, we reconsider square oot of Section 4.1, specified by

[con N :mt {N > 0};
var T : int;
square root
{2 < N A {z+1)* > N}
I
For N > 0, we have 0 < N < (N+1)%. A straightforward application of the binary
search yields the following C(leg N) program.

Binary Search 103

(N 20}
[var y : int;
z,y:=0N+1{0Sz <y A 2? <N <y’ binary search}
idozt+l#y
— f{var f : int;
ho= (z-+y) div 2
i hxh< N —z:=h
I N<hxh—y=4h
fi

od

|
{#? < N < (z+1)?}

Once again, we remark that the correctness of this program does not depend on the
fact that =? is an ascending function of = on the natural numbers. However, when this
program is used to establish 6 = (dp:0< p: N =p?) for boolean variable b, then
the ascendingness of z* is needed.

Exercises

Derive a program for the following specifications.

0. [[con N :int {N > 0};
var + : bool;
g
{r=0p:p20:N=p’)}
I

1. Derive for given N, N > 0, a program for the computation of the smallest integer
« that satisfies ° ~ 6% + 9z > N.

2. feon N :int {N > 1}; A, B ; array[0..N|of int;
{A0< BO A AN > B.N}
Var r : int;
S
{07 <N A Ar<Br A A(r+1) 2 B.{r+1)}
I

=N

T st i e

104 Searching

6.4 Searching by Elimination

Searching by elimination is the last technique discussed in this chapter. It may very
well be studied at a later stage. Its derivation is a first example of so-called program
refinement. The resulting program is obtained 1n a number of steps, and intefmediate
programs have, for instance, sets as variables. (f

We are given a finite set ¥ and a boolean function § on W, such that S.w holds for
some w € W_ We are asked to denive a program with post-condition S.z. We identify
boolean functions on W and subsets of W, i.e., S 1s identified with {z € W |5z}
Thus, the post-condition may also be written as z € S or as

R; SO{I}¢@

Note that 1n terms of sets the pre-condition *5.w holds for some w in W' may be written
as SN W s 0. We replace {z} by variable V' and we define P, as a generalization of
the pre- and post-condition, by

P SNnV#E A VCW
From P A |V]| =1 we infer that the unique element of V satisfies K. This leads to

{SNW # 8}

Vom W

{invapant P . SNV #0 A V ¢ W, bound: |V}

;do [V] # 1 — ‘decrease |V| under invariance of P od
1z == ‘the unique element of V7

From P A |V] s 1 we conclude that |V| > 2. Searching by elimination is based on the
fact that of any two elements of V' atf least one may be removed without violating P
This yields the following approximation:

V=W
;do [V #1
— ‘choose @ and & in V), such that a # ¥’
{eeVAbeV Aa#bASnV #{§}
(if By — V=V \{a}

8B - V-=V\{b}
fi

od

2= ‘the unique element of

represented by two integers o and b,0<e<b< N, such that

Searching by Flimmation 105

From SNV £ 0 we infer, «S.a = SNV
also have §.b = §n VA {a} # 0. Hence,

formally, this is derived as follows:

\{a} # 0 and, since be V A 4 # b, we
~S.aV S.bis a good chowce for By. More

SOVED = Sn(V\{a}) #£0
= {acV}
SavSn(Vi{a)#0 = Sn(V\{a}) 0
= { predicate calculus }
Sa = Sa(V\{a})z0
= {beV\{a}}
Sa = 5b
= { predicate calculus }
—S.avSh

Qn account of the symmeliry, =86V 5.a 15 a good choice for By. Note that this choice
yields two guards whose disjunction 1s true. Substitution of thes

: _ ¢ guards into our pre-
vious program yields the first version of searching by eliminatio ’

il.

Searching by Elimination (D)

{Gw weW: Sw)
V=W
ydo [Vi# 1
—+ ‘choose a and b V', such that « #b
i -Sav8h —V-= VA {a}
| =SbvSa—V=v \ {5}

fi
od
;& == ‘the unique element of V7
{S.z}

We often encounter situations 1n which set W 15 |0.N]. Tn that case V may be

106 Searching

V = {a..bl

|V} 1 corresponds to a # b

V := V' \ {a} corresponds to ar=a-+1
V1=V \ {b} corresponds to b:=06—1

and the program may be encoded as /

Searching by Elimination (1)

{(3i: 021 S N: Sid)}
a,b:i=0,N
rdoa#b
wr if ~SaVEh —ma=a+l
[~SbvSa-sb=b—1

il
od
izi=a

{3.z}

Our first application of searching by elimination is the derivation of a program that
satisfies

[con NV :int {N > 0}; f: array{0..V] of int;
var z ; int;
maziocation .
{0<z2< N A fa=(maxi:0<i<N: fi)}

|2

The posi-condition may be rewritten as
0<s < NANI:0SISN: fig fr)
I order to use Searching by Elimination we define 5 by

Sz = (Vi:0Sig<N:figfa)

Searching by Elimination 107

Then

-S.av Sb
= { predicate calculus }

Sa=5b .
= { definition of S }

Vi'0<:1SN:fi< fa) = Vi:0<i<N:fi<fb)
<= { transitivity of <}

fa< fb

Hence, f.a < fb = ~SaVv Sband, by symmetry, f.0 < f.a = -S5b5V Sq as well.
This leads to the following solution to maziocation

fvara,b:int;
a,b:=0,N
idoa##b
—if fa<fb —a=a+]
Jfb<fa —b=b-1
fi
od
wi=a
J

{OSQ:SN/\f.a::(maxz:GSiSN_f.i)}

Our second example 15 known as the celebrity problem. It 1s described as follows.
Among N1 persons, a celebrity is someone who is known by everyone, but does not
know anyone. This relation between persons is represented by a boolean matrix &:

k.7 = person ¢ knows person j

Kuowing that a celebrity exists among these persons, one 15 asked to determine such a
celebrity, A formal specification is

lcon N :mt {N > 0}; k- array 0..Nix{0..N] of bool;
{Bi:0<i< N (Vy:5+#2: kjin—kag))}
var x ¢ int;
celebrity
{0<z<NA(V;: 7#z; kgx A -kzg))}
]I

e A e

108 Searching

We choose Sz = (V7 j#z:kya A ~kzj) and we derive

-S5.a Vv Sb
<+ { predicate caleulus}
-5)
{ definition of S } /
-(V7:7#a:kjan —kaj)
[De Morgan }
(37 j#a:--kjeV kaj)
« {b#a}
wf.ba V k.ab

fll

Hi

By symmetry, =S.b < ~k.ab Vv £ba Since kab V ~kab = t_rue, we st.)rer;gtilen
th{e guards sii;ghtiy, thereby destroying the symrmetry, and we obtain as solution

[var b :int;
ab:=0,N
idoa#b
— if kab —a=a+1 .
ﬂ—;k_u_b—fh::b-i v

fi
od
; r=4a
|3
Exercises

0. Derive a program that non-deterministically computes a number in the range

[0..N], N > 0.

t. Derive from general program scheme (0) a scheme for wineh W =f[0..N | an;cgi, ‘;\,rlf
represented by integers gz and bsuch that 0 S e <6 < N+land V = {a}Ub. V|

]

What changes have to be made to the program schemes such that they satisfy

pre-condition Wo# B
post-condition S # @& = Sz

Searching by Elimination 109

3. Solve the bounded linear search problem of Section 6.2 by application of Searching

by Elimination,

- The starting pit location problem is stated as follows, There are N+1 pits located

along a circular race-track. The pits are numbered clackwise from 0 up to and
including N. At pit 1, there are p gallons of petrol available. To race from
Pit 2 to its clockwise neighbour one needs g gallons of petrol. One is asked to
determine a pit from which it is possible to race a complete lap, starting with an
empty fuel tank. To guarantee the existence of such a starting pit 1t is grven that

{Ez:OgtSN_’.p.i]z(Ez:GSng;q.i)
A formal specification of the problem is

[con N :int {N > 0} pyg - array [0..N]of int:
{(21:051'5N:p.i)=(21:051§N:q.i)}
var z : int;

starting pit {ocation
{0<z<NA (Vi:OSzSN,D,x.iE{))}

I

where [).2.7 15 the difference of the number of gallons provided and the number
of gallons needed, when racing from pit ¢ to pit 7 in clockwise direction:

Dig=(Zk. k from i up to and not including 7 in clockwise direction p.k— gk}

Chapter 7 /

Segment Problems

7.0 Introduction

Tn this chapter we illustrate programining by so-called segment problems. Such prob-
lems involve the computation of a longest or shortest segment that satisfies a tertain
predicate, usually defined in terms of a given array. Many attempts have beﬁﬁ made
(and are still made) to classify these problems with respect to the predicates ihat\deﬁne
the segments one 1s interested in. In this chapter we do not classify these problems nor
do we provide general program schemes that can be applied to all kinds of seginent
problems. Of course, some general aspects of this type of problem will emerge during
our treatment.

The purpose of this chapter 1s to show Aow problems may be solved, what decisions
are made in the derivations and which properties piay a specific role. The techmiques
used in this chapter are applicable to other classes of programming problems as well.

In Chapter 8 we apply & technique called Slope Search to segment problems. That
technique yields another way in which these problems may be solved.

7.1 Longest segments

Let N > 0 and let X[0..V) be an integer array. We are interested in the fength of &

tongest subsegment [p..g} of [0..N} that satisfies a certain predicate defined in terms of
X. Exampies of such predicates are

all elements are Zero,
the segment 18 left-minimnal,
the segment contains at most 10 zeros,

(Vi:p<i<g:Xa=0}
Vi:p<i<g: Xps i)
(#Fi:pLi<gg: Xa=0)510

110

Longest segments 111

(Vi,7:p<1<3<g:Xi# X.j) all values are different.

In the following sectio i}
stics. 8 us we soive these problems. Each of them has its own character

7.1.0 All zeros

As our first example we solve the problem of determining the fength of a longest sepment
of X [GN } th.a.t contains zeros only. It is about the simplest longest segment priblzgz
one can imagine .and, hence, it is very well suited to illustrating the calculations that
are typical for this kind of problem. A formal specification of this problem is -

feon N :int {N > 0}; X : array {0..V) of int;
var r :int;
all zeros
{r=(maxp,g:0<p<g<N A (Vi:pgz‘(qi)(.z:(l},qu)}

I

Our first step is the introduction of a name for {(Vi:p<t<q:X.i=0). This does
:3;; oz;fyi abbr::v;e;tei th:ia post-condition, but, more importantly, it enables us to find
wicn parts of the derivation are independent of the speci ' i

ecific for,
For 0% p 5 g < N e dots o o D m of the predicate,

Apg = Viip<i<qg: Xi=0)
Post-condition R may then be written as
f: r=(maxp,¢:0<p<g<N A Apg:q—p)

What can be said about i
predicate A? Its term, X1 =0
1t holds for empty segments, i.e., I 1 docs not depond o p or 1.

0 Wt
{0} Ann for0<n<pN (A bolds for empty segments)

Furthermore, A is ie., i
. prefiz-closed, i.e., if a segment satisfies A &
segment satisfy .4 as well. More formally, - fom all prefixes of that

(1) Apg= (Vi:p<i<q:Api) for0 LSp<gs N (Ais prefix-closed)
and A 15 postfiz-closed:

{(2) Apg= (Vi:p<i<yq: Aig) for0Sp<g< N (Ais postiix-closed)

112 Segment Problems

Since the term, X2 = 0, in A neither depends on p nor on g, it does not matter
! -

whether we replace in R the constant 0 or the constant N by a variable. We propose

as mvariants Fy and P defined by

Py r=(maxp,q:0<p=qsn A Apg:ig—p)

and {
P, 0gsn<N

For the mitialization, we derive

(maxp,q:0<p<g<0A Apg:q-p)
{ calculus }
(maxp,g:p=0Aqg=0A Apg:q-p)
s {A0.0, . {0)}
0

i

;

from which we infer that Py A P, 15 initialized by n,7:=10,0. Note that we used (0).

For an mcrease of n by 1 we derive, assuming oy A Py An# N,

(maxp,g:0Sp<qg<atl AApg:ig-p)
= {split off g =n-+1}
{maxp,g:0<p<g<n A Apg:q—p)
max (maxp:0<p <+l A Aplnt+l): ntl-p)
{Po}
r max (maxp:0<p<ntl A Ap(n+l) ntl—p)
= { + distributes over max for a non-empty range, A.(n+1}.(n+1), cf. (0} }
rmax (n+ 1+ (maxp:0<p<atl A Ap(nt+l). —p)
= { property of max and min |
rmax (n+1—(minp:0<p<nt+l A Apfn+l):p))

lending to the introduction of integer variable s and accompanying invariant
Q: s={mmnp:0<p<n A Apn:p)
{Why 15 s not defined as s = (minp:0<p < n+l A Ap.(n+l}:p} 7} From

(minp 0<p<0 A ApD:p)=0

Longest segments 113

we nfer that s should be initialized at Zero a

nd we obtain a program of the following
form.

{NaDA(Vn:ngsN.A.n.n)}
n,r,s:=20,00
{invariant: Py A P, A Q, bound: N — n}
idon # N
— ‘establish Q(n = n41)
1T =rmax{n+l-s)
==l
od
{r=(maxp,g:0<p<qgSN A Apg.q-p))

This scheme leaves ‘establish Q{n:= n+1} as a subproblem. Since .4 holds for
empty segments, the range of the quantification i Q 1s non-empty and) can be
written as the conjunction of @, €, and Qy, defined as

Go: 0<s<n
Q1. .A.s.n
Q2. (Yp:0<p<s:—dpn)

Since A is prefix-closed, we have “Apn = ~Ap(n+l) for 0 < p < n, and, hence,
Q2 = Qulni=n+1)

We have)y = Qoln:=n+1) as well and we conclude
Qo A Q2 A As.(ntl) = Hn = n-+1)

The fact that Qy{n:= n+1) 1s implied by @, has another consequence. From
Qln:=n+l) = (Vp:0< P <s:mAp(ntl))

we 1nfer

Q2 = (minp: 0<p<ntl A Apntl):p) > s

114 Segment Problems

r.e., only values p for which $ < p < n+1 have to be im_restigated.A Forp = nil we
i{-u;;w that A.p.{n+1) holds, so we usually start our investigations with the calculation

of Ap.(ntljfors <pgn. - |)
We return to all zeros, for which Ap.g = (Vi:p<:<g Xa=0)and we
compute Ap.(n+ilfors<p<n:

Ap.(n+1) (
= { definition of A }

(Vi:rp<i<atdl: Ni=10)
= [splitoffe=m,p<n}

(Virp<i<n: Xa=0AXa=0
= { definition of A}

Apn A Xn=10

Hence,

QAXn=0= Q{n:=ntl)
and
Xn#£0= (Vp:is<sp<n:Apintl))
from which we infer, since A.{n+1}.(n4-1) holds
Xa#0 = Qn=ntl){s:=n+tl)
This leads to the following solution to all zeros:

[[var nt,s :int;
n,r,5:=0,0,0
idon# N
— if Xon=0 - skip
[Xns0 — s:=n+i
fi
7= rmax (n+i—s)
yri=n+tl
od

]

Note that we did not use the postfix-closedness of A.

Longest segments 115

7.1.1 Left-minimal segments

As another example of the approach outlined in the previous section, we consider the
problem of the computation of the length of a longest segment that 15 left-minimal. Its
formal specification is

fcon IV :int {N > 0}, X - array [0..N} of int;
var T mt;

oy
{rﬂ{mup,q:USquSNﬂ(Vi:pst<q:X-erX-i):q—P)}

J.
As before, we start with the introduction of 4 and define for0<p<g< N
Apg = (Virp<i<y: Xp<Xi)

Evidently, the term in A.p.g depends on p and does not depend on g. However, the
fallowmyg properties of A.p.q do hoid:

0 Ann for0<n< N (A Emlds for empty segments)
and "
{1} Apg= (Vi:p<e<yqg: Api) for0<pg N (A 15 prefix-closed)

But A is not postfix-closed and the derivation of a program based on a replacement
of the constant 0 by a varable is quite difficult, as the reader may verify. As in the

previous section we define 5, Py, and € {the conjunction of @y, Q;, and Q) as

Py T=(ma3‘?,f11953759’$ﬂ/\A‘p.q:q-—p)
P 0<n<N

Qa. 0Ls<n

&y Asn

@ (Vp:0L<p<s:—=Adpn)

Since A is prefix-closed, we have, as before,
Qo A Q2 A As(ntl) = C{n = nt1)

We derive, assuming @ A 0<n< N fors<p<n

G o w7} e

116 Segment Problems

Apntl)
= { definition of A }
(Wi:p<i<ndl: Xp<LXid)
= {splitoffe=mn,p<n<ntl}
(Vi:pSi<n: XpS XA Xps i
= { definition of A4}
Apn A Xp<Xa

hence,

QAXs<Xn = Qn:=nt+l)

When X.n < X.s, we have, starting with the last line of the denvation above,

Apnan Xp<Xn
= [Xn<Xs}
Xp<Xs
{ 3;, definition of A.s.n}
Xp<Xsa(¥Viis<i<n.Xs<Xd)
= [sgptn, Xn<Xs}

p=n
from which we infer

QA Xs>Xn = Qni=n+l){s:=n)
It 1s now easy to code the program:

[var =, s:mnt;
n,r,s:==0,0,0
idon# N
— if X.s< X.n — skip
ﬂ Xs>Xn —ws=un

fi
7= rmax(n+l—s)
= a4l

od

Longest segments 117

7.1.2 At most ten zeros

In this section we discuss a variation on the previous approach. Reconsider the program
scheme of Section 7.1.0 in which ‘establish Q(n:=7n+1) has to be refined. We assume
that A is prefix-closed and holds for empty segments.

The pre-condition of ‘establish Q{n 1= n41)' is @, the conjunction of

Go: 0<s<n
Q. Asn
Gy (Yp:0<Sp<s:~Apn)

As stated before, we have Qp =+ Qo(n = n-1) and, since A is prefix-closed, we have
Q1 = Qy(n:=n+1) as well. Thus, Q implies

0<s<ntiA{¥p:0<p<s: ~Ap{n+l))

which may be used as invariant for a repetition with guard —A.s.{n+1) and bound
function n-+1—s (the invariance of 5 < n+1 follows from A.(r+1).{n+1)). Substitution
of this linear search in the program scheme results in the program below.

n,7,5:=0,0,0
don# N
— do ~A.s.(nt1) = 5:= 541 od
iT = rmax (n+1-—z)
ynim a4l
od
{r={(maxpq:0Sp<q<N A Apg:qg—p)}

To determine the time complexity of this ‘program’, we add ghost variable £

n,r5:=000;t:=0
idon#£ N
— do —As(n+l) ~ s:= g4+1 2= 141 od
7= rmax (n+41-s)
s adl e 1
od

118 Segment Problems

Variable ¢ 15 initialized at 0 and 15 incremented in each step of the outer repetition and
in each step of the mner repetition. Hence, the final value of ¢ 15 & good measure for
the time complexity of the program. When s is incremented by | then ¢ is incremented
by | and the same holds for n and ¢. Thus, the value of t — s~ n is not changed during
execution of the program. Initially this value 15 zero. Thus,

L=s54+n

is an mvariant of the program and holds mitially. Since s <n < N is also an mvnr(aat.

of the repetitions, we have
I <2N

from which we conclude that the time complexity is O(V). In this discussion we have
assumed that —.A.5.{n-1) can be evaluated in constant time. If this 1s not the tase,
refinement of this expression may fead to a final program that is not Enear at all,

We use this scheme for the derivation of 2 program for the computation of th
length of a longest segment that contains at most 10 zeros. Its formal specification is

[con ¥ :mt {N > 0}; X - array{0..V}ofint;
var v : il

8
{r=(maxp,g:0<p<gSNA(Fr:pgi<g:X1=0)<10:g~p}}

) /

With Ap.gdefined as (#1:1p<1<g: Xa=0}<10, wehavefor 0<s<n< N

—A.s.(n+1)
= { definition of A}
(#r:s€1<ntl . Xa=0)> 10

We introduce vanable ¢ and accompanymg invartant Q' defined by
G ec=(#i1.5<1<n.X1=0)

Provided that Q'{n:= n+1), we may replace ~4.s.(n+1) by ¢ > 10.
From (#::0 <1< 0: X1 =0) = 0 we conclude that ¢ should be initialized at 0. We

obtain the following O{N} selution.

Longest segments 119

[[var n, s, c: mt; .
n,7.8,¢:=0,0,0,0

jdon # NV
— HXn=0—ci=ctl
| Xn+#0—skip
fi
{c= #Fr.os<i<ntl: Xa=0))
idoe> 10
= X s=0-ci=c~1
I X.s#0— skip
fi
5= 541
od
ir= rmax{ntl—s)
= nek]
od

I

Tiae derivations of the selection statements in this program are straightforward and
have been left to the reader.

7.1.3 Al elements different

Our final example 15 a problem for which we derive a quadratic solution, despite the [act
that the defining predicate holds for empty segments, 15 prefix-closed and is postfix-
closed. The problem s to determine for a sequence X, the length of = longest segment 1n
which all values are different. (Using more sophisticated data structures ap O(Nlog N}
solution to this problem can be derived, However, the treatment of such data structures
is beyond the scope of this book.} A formal specification of the problem is

[cou N :int {N > 0}; X = array {0..N) of int;
var r : t;
5
{r=(maxp,¢:0<pSg<N A Apg:g-p)}

E!

where for0 < p<g< N

Apg = Vigip<i<; <g:Xa# X5

120 Segment Problems

t

Verify that A 15 prefix-closed, postfix-closed and holds for empty segments. We define
Py, P, and @ as before and we consider ‘establish Q{n := n--1). Its pre-condition is

o: 0Z5ssSn
Q1‘ A.S.’n
Qs (Vp:0<p<s- —~Apn)

; Since A is prefix-closed, (J, implies (Vp:0 £ p < s - ~A.p.(n+1}). Furthermore, /

As{nsl)
= { definition of A}

(Vi,7:8<i<j<ntl:Xi# X 7)
= {splitoff j=n}

Vig:s<i<j<n: Xa#F X, JiAnVMi:s<e<n. . Xa# Xn) -,
= { definition of 4}

AsnA{Viis<i<n:iAas# Xn)

Hence, Q{n:= n+1) is the conjunction of the following four predicates:

< s<ntl

A.sn
(Vi.s<i1<n . Xi#Xn)
(Vp:0<p<s:~Ap(n+l))

The first, second, and last conjunct are unplied by @ and the third conjunct kolds for
s = 1. As we did for the Bounded Linear Search, we mntroduce a fresh vanable {k}.and
we define invariant U7 as the conjunction of Uy, Uy, Uh, and Us:

Ug. s<h<ntl

Uy Asn

Uy: (Vith<i<n:Xi#Xnm)
Uy (Vp:0Lp<s:~Ap(nil))

These are initialized by h:= n. As guard we choose, of course, A # 3. Since A is
postfix-closed, s:== h maintains U;. A straightforward calculation yelds

Unh#s A X(h—11#Xn = Ulh=hH-1)
Unh#sh X (hel)=Xn = Uls=h)

Longest segments

and we obtain as solution:

[varn,s: int;
n,7,5:=0,00
idon# N
— |[var k:int;
hi=n
idoh # s
X (1) Xon — R h—)
I X{h-D)=Xn —s5:=1
fi
od
|
it = rmax(ntl—s)
inr=nl
od

I

This program has time complexity O(N?).

Exercises
Derive an O{N) solution to

fcon N :int {N > 1}; X - array [0..N) of iat:
var r : inf;
8§

{r=(maxp,q:0<p<g< N A Apg:g-p))

I
where A.p.q is defined as
0. (Vi,j:pﬁiﬁj-(q:Xﬂ:X.j)
@X [p..¢) 15 ncreasing.
2. (Virp<i<g:Xig X(g-1))

3. (#1:p51<q:X.i=G)m2

121

122 Segment Problems

: 4,"The product of any two elements of X[p..g) 15 at least zero.
5. X[p..q) 15 monotonic (ie. ascending or descending).
6. (Dirp<i<g:Xilmod3=10

The following exercises are more complicated and may be skipped at first reading.

7. X|p.-g) contains at most two distinct values. :
8 (Viip<i<qg:iXplz Xd) /
g (Vig:p<1<y<q:0gXa~N3<1)

10. (Vi,gipS1<y<g:|Xa—-Xj=1)

1. {Vi,3:p<i<i<g: Xa~Xg3<1) .

7.2 Shortest segments

4

We present only one exampie of a shortest segment problem. In this section we show
that the approach for longest segment problems may lead to rather complicated so-
{utions when applied to s shortest segment problem. This section may be skipped at
first reading: m Chapter & the same problem 1s solved m a much better way.

The problem is to compute the length of a shortest segment that contains at least two

zeros. 1t 15 formally specified as

feon N st {N > 0}; X . array [0..N) of int;
var 1 ink;
g
{r=(minp,q:0<p<g¢<N A Apg:qg-p)}

-

where, for 0 € p < g < N,

Apg = (#ripi<g: Xi=0)22

1t 1s not known whetler segments satisfying A exist. When, {or instance, X{0..V} does
not contain a zero then the post-condition is 7 == co.

Predicate A does not hold for empty segments, 1s not prefix-cfosed and rot postlix-
closed. However, —.A, defined by (= A)lpqg = —{A.p.q}, does have these properties.

Shortest segments 123

The duality between longest and shortest segment problems 1s studied 1n more detail

in Chapter 8.

We may try to derive a program along the same lines as we did for longest segments
¥

by defining

Py . r=(minp,g:0<p<g<nn dpg:gp)
P. 0<a<N

Q 5=(maxp:GSpS1iAA.p.n:p)

gj::fi a;]l c;xlc&fztions glf Section 7.1.0 with max replaced by min and vice versa
not work. e problem 1s tha{ the ran i i

and, hen{:fa, no distribution of 4 over min 52?1 (:ertgf);}?ej.lhg;:t::(;ileazytiljle :*_T;F't}’
want to stlck‘to tl%e approach of the previous sections, we should ensure that biaea e nges
1z the qua{ltzﬁcahtong are noa-empty, Then all results of the preceding ;ectionsanges
be used {with the replacements ndicated above). Note that A.0.n guarantees tf tn;?y
ranges are non-emply. Thus, we arrive at the following pregram' scheme: e

‘establish 5 A B, A Q A Ao
{invariant: By A Py A Q@ A AQ.r, bound: N - n}
don# iV
= ‘establish Q{n = n+1)’
= rmin{nti-s)
(T el
od
{r=(minp,q:0<p<g< N A Apg:g-p)}

We postpone the discussion of ‘establj ! i
Qe e discussion of ablish Py A Py A Q A A0.n' and we consider ‘establish

Q

il

{ definition of 7}
s={maxp:0<p<n A Apn:p)
[A.0.n, hence, the range is non-empty }
0<s<n A dsn A (Vp:s<p§1r.:—x.4.p.n)
{ defimtion of A}

i

]

124 Segment Problems

0<.5<n/\(#i:s§z<n;X.im0)22A(#i;3<i<niX,z'=0)<2
= { calculus }
0<s<nAXs=0A(#us<i<n: Xa=0)=1

and, hence,

1l

Q(n:=n+l) = 0L s <ntl AXs=0A{#r.s<i<ntl: Xi=0)=1
Bvidently (
QAXn#0 = Qni=n+l)
whereas
QAXn=0= (Fi:s<i<ntl:Xi=0)=2

~

i 1 NASK
In the latter case s should be replaced by the unmique £, 8 < t<a, for t:}ctg::i:ie}ﬁfnte o
This ieads to the introduction of variable ¢ with accompanying invarian

Q: s<t<nAXt=0
Then
QAQ AXn#0 = Xs=0AXt=0A(Fr:s<i<ntl: Xi=0)=1
and |
QAQ AXn=0= Xt=0AXn=0A (Fr:i<r<mbl:Xi=0)=1
which yields for ‘establish @(n = n+1)'
fXn#Q~skip Xn=0—st=tnf

: y .
The only thing that is left to be done is ‘establish Py A PL A Q A (", Let us summarize
these invariants.

Py r={(minp,g:0<p<qgsnA Apg:q-p)
P: 0<ngN

Q: s=(maxp:0<p<nAApn:p)

@ s<t<nAXi=0

Shortest segments 125

When X[0..N) contains less than two zeros, these invariants cannot be established.
‘Thus, we perform case analysis and we introduce integer variable ¢ for which

c=(#z:0$i<n:X.zwﬁ)/\c52/\(0==2Vn=N)

1s the post-condition of a repetition. Its derivation is straightforward. When ¢ < 2
then oo is assigned to r, otherwise By, Q, and Q' are initialized such that

n_sz(minp,qzﬁsp_gqgn A Apg:g—-p)

Since a more elegant solution is derived in Chap

ter 8, we do not show the calculations,
but merely present the resufting program:

{var n,c: int;
n,ci= 0,0 '
idonEN A2
= HfXn=0-—ci=¢e+1 JXns0-skip &

Mo B |
od
iife<2wri=00
ﬂc=2

— [var s, ¢ : int;
5:=0;doX.5#0— g:== 541 od
iti=8+1do X £ 40— £ t41 od

s i
ri=n—s
idon# N

— fXn#0—skip[Xn=0—st:=tnfi
i7=rmin(n+l-s)
i= a4l

od

126 Segment Problems

Exercises

0. Solve

[con N:mt{N = 0}; X = array|0.N)of int;
{(Vi:0<i<N:0< X2 g2}
var r :nt;
S
{r={minp,g:0<p<¢<N A Apg:q-pj}

Iz

where A.p.g 15 defined as

Values 0,1, and 2 oceur 12 X{p..q).

Chapter 8

Slope Search

8.0 Introduction

Slope Search, aiso knows as Saddleback Search, 15 a techmgue which 15 applicable to a
targe class of problems that involve quantifications over two bound variables, i.e., over
an arez contaned m Z x Z. In most applications the term of such a quantification is
2 monotonic function of the bound variables, for instance, ascending in both variables
of increasing in one variable and decreasing in the other variable. Examples are the
longest and shortest segment problems discussed 1n Chapter 7. For these problems the
term 15 ¢ — p, which is an increasing function of g and a decreasing function of .

Ir Section B.1 we discuss the basic prnciple of the slope search and we provide
varnous examples of its use. In Section 8.2 slope search 15 applied to segment problems.

8.1 The basic principle

Let M and N be natural numbers and let array [: .M x 0.V — Z be ascending
in both arguments, i.e.,

(Vi< S M- (V3:0<5 <N fag < Fafz+H1))
AV 0K <N (Vi:0<, < M fag £ Fli41)9))

Assume that a vaive X occurs in frie,
(B4,7:0<1< M ADZS SN faj=X)
We are asked to derive a program that establishes for integer vanables e and b

USae<MAOSHSNA fab=X

127

128 Slope Search

Array f 1s ascending 1n both arguments. Hence, f has itz minimum m (0,0} and its
maximum in {M, V). Since X occurs m f, we have i

fODLX S FMN

Having this information, it does not heip much to inspect Jf.(].{} or fM.N, ’I‘;.rg oti‘:;r
pomnts of [0..M| x [0..N| are possible candidates for inspection: (0, N} and (M, 0). We
consider (0, N). Since f 15 ascending in its first argument, we have

JON=(min1:0<:< M faV} [
hence,
FON>X = (Vi: 01 M: fiN>X)

ie., when f.O.N > X then the search area may be reduced to |0..M] x [0..N—1[. Since
f 15 ascending in its second argument, we have

fON = (maxj:0<7 <N £0.4)
hence,
FON <X = (¥7:0S7 SN f03<X)

ie., when f.0.N < X then the search area may be reduced to {1..M| x [0..N].
We formalize this discussion as follows. Let I and J be such that

0ISM ADSTENA fIT=X

The *search area’' is charactenized by (I,J) € |a..Mf| % 10..4] or, equivalently, we ch’oose
ag invariant for a repetition

P 0Za<TAJ<SbEN

which is established by a,b:== 0, ¥. The reduction of the search area in terms of P is
ptven by the following derivations.

fab< X
= { f is ascending in its second argument, J < b}
fad <X
= {fI.J=X}
a# T
= [P, 1n particular, e < I'}
atl <]

The basic principle 129

and

fab> X
= { f is ascending in its first argument, a < [}
fIb>X
= {flLJ=X}
b J
= { P, 1 particular, J < b}
J<b-1

We conclude

PAfab<X = Pla=a+tl) and P A faab>X =% P(b:=p-1)
This yields the following solution:

a,b:=0,N {invariant: P bound: N — g+ b}
ido fiab < X v g1 g4l

l fab>X = pr=py

od

{fab=X}

This program kas time complexity O(M+N). A sumilar program 1s obtammed when we
choose (M, 0) as starting point,

An operational interpretation of this technique is the following. The three-dj.
mensional surface z = fzy has as fowest point (0,0, f0.0) and as highest point
{(M,N, f.M.N). Somewhere in between position X occurs, To find that position
ane should not start at a nuimam or at a maximum, but somewhere in between, for
instauce, at (0, N, £.0.N} or at (M, 0, f.M.0), and move along the slope of the surface
n such a way that position X 15 approximated as well as possible, i.e,, by going down
when the value is too high and by going up when the value is too low. Because of this

interpretation, which will not be purstied any further, this technigue 1s called Slope
Search.

Note that the points where J attains its minimum or its maximum are not 1mpor-
tant. The other two points, that are either the maximum of a row and the munimum of
a colurmn, or the minimum of a row and the maximum of a column, are usefuf. When,
for instance, fis ascending in its first argument and descending in its second argument,
suitable invaniants are 0faglAO<SH<T or I<a<iMA J<h< v

The reduction of the search area, Le., the reduction of the problem to a smaller

problem of the same form, usually leads to the introduction of a tail invariant, For the
above program, we have

130 Slope Search

(31,7:0< M A0S SN fag=X)

_ T

(3i,1:a51SﬂJAUSJSij.:.J::X)

as tail invariant. In the following sections we use tail mvarnants of this form.

8.1.0 Searching

In the previous section we solved the problem of searching for a value in f two-
dimensional array, given that tie value occurs m the array. In this section we consider
the followmg problem: we are given ntegers M and NV, M >0 A NV > G, and integer
array f10.M)%10..V} such that f s ascending in both arguments. We are asked to
determine whether value X occurs in f. A formal specification 15

[con M, N, X :int {M >0 A N 2 0}; f. array [0..M)x|0..N) of int;
{f 15 ascending in both arguments}

var T : bool;
g
[r=(347:0<:<MA0L3< N fag=X)} -

I

Following the stralegy explained in the previous section, we define “tail’ G.a.b for
D<a<MAO<HS N by .

Gab = (3i,3:e<i<M A0 <b:f.z.1=)i:)
In terms of &, the post-condition of the specification may be written as
R. r= G0N
We introduce integers ¢ and b aad define tail mvanant Py by
By rv Gab = GON
The bounds for o and b are specified by invariant P .
P, 0<asMAODSIEN

A proper initialization of Py A Py 18 o, 6,7 =0, N, {alse. For a= M V & = (the range
of the quantification in G is empty, hence,

The basic prmciple 131

PBAafa=Mvi=0)
= { definitions of 7 and G}
vV ialse = GON
{ predicate caleufus }
r= GON
{ definition of R}

1]

i

R

Furthermore, whes r j
R 0T s true, then rv Qab = r, hence,

TV e = GON
= {rvGab =}
GON

.,
it

and we conclude P A la=MVe=0vr) = R Thus, we choose

aEMALAQA -1

as guard of a repetition.

We investigate an mcrease of @ by 1. Assuming 0<a < M A0 <b< N, then

G.ab
= { definition of G }
(Bi,]:aSt<M’/\USJ<b'f.1._;r=X)
{split ol 1 =g}
Glatllev (A7:0<7<b- fiag =X)

{ f is ascending t its second ar i
gument, 0 < b1, assumi La.{b—
G{at1).b V falge el

= { predicate calculus }
G{at+1).b

Iit

i

Hence,

fa(b-1) <X = (Gab = G.(at1)h)

Similarly, we have for 2 decrease of b by &:

132 Slope Search

G.a.b |
e { definition of G} f
(Bi3:a<i<MA0L3<h: fif=X)
= {split off 1 =5-1} 0
i 4 _‘_ bwl} -
Guafb-1} v (Qitagi< M fif _]
{ f is ascending mn its first argument, @ < M, assuming f.a.(b—-1) > X'}

I

G.a.{b—1) V false
= { predicate calcnius } (

G.a.(b~1)

Hence,
falb-1)> X = (Gab = Gab-1))

For the remaining case fa.{b-1)=X wederivefor0<a<M AO<bS N

BAfalb-I1=X
= { definition of Fy }
{rv Gab = GONYA fa(b-1)=X
= { definition of G}
r Vime = GON
{ predicate calculus }
true V Guab = GON
{ definition of Py }
Fy(r = true)

]

[

These derivations lead to the following solution

:int;
: varai)f‘r := 0, NV, false {invariant: P, A P, bound: M — g3 b+ 4 (~r)}
doa# M ABZI A —r
—if fafb-1} < X —a=atl
{ fafdb-1)> X~ bi=b-1
§ fia{b—1)=X — r=true
i |
od

Ay

The basic prinaiple 133
This program has optimal time complexity O(M+N), which is proved as follows. Let
h[0..N] be an integer array, then a program for the computation of

(Hi:GStsN:h.z=X)

has at least time complexity O(N), since any correct program will inspect all j.; in
the case that X does not occur 1n h. Define array f[0.N]x|0..N] by

fag=—0oo ifi4+3<N
fili=co ifitj> N
fij=hi Hitj=N

Then f is ascending in hoth arguments and a correct program for the computation of
Giii0StSNAOSEN faj=X)

will inspect all SA.(N~i) m the case that X does nat oceur in f.

8.1.1 Decomposition in a sum of two sguares

As owr second example, we derive a program for the computation of the number of
ways in which a natural number N can be written as the sum of two squares, We
supply an annotated program together with its numbered derivations,

The first thing to do is to supply a formal specification:

flcon N :int {N > o};

var r: int;

3
{r=(#z,y:05m5y:zz+12=N)}
3

Since $?+ 4% is Increasing in both arguments on the domain 0 < z < y, we define G.a.b
as

G.a.bz(#m,y:aﬁ:vgygb:::z-é-yi’==N}

and we choase as mvariants

Foi r+Gabs (#r,y:0<e <y o442 =)
P}f Gﬁﬂ

134 Slope Search

In the following proofs we present the calculations for a solution.
Proof 0

G.ab
{ definition of G }
(#fryrasaSy<bizttyt=N)
= {provided a > 6}
g

i

Hence, F; A @ > b inplies the post-condition. (

Proof 1
For the nitialization, we derive for 0 < 6

G.0.b .
= {definition of G }

(#Foy:0<z<ySh:a®+y" = N))
= range split o

(#m,{y:OgS:::)Sy:zz-f-yz:N)""(#E,'yIﬂSﬂ?Sy"\ y > bz 4yt =)
= [provided B2 > N, 0 < b}

(#3y:0<c <y 2 4+ y = N)

Hence,

r=0Aa=0A0<H6A>N
= { se= abave }
r+Gab=(f#fz,y:0<zs<y: 22+ P =N)A0<a
= { definitions of % and P, }

P n B

Proof 2
We invesligate an mcrease of @ by 1. For 0 < e < b, we derive

Glab
{ definition of G }
(#ryeser<y<t:s2+4 = N)
{splitof x = a |

i

The basie principle 135

Glatllot (#y: ey <bia? 442 = N}
= {a® +y% 15 Increasing in y, @ < b}
Glat+1)6+0 ifa?+p2 < i
{ Gletlhb+1 fa?+ 42 =

Proof 3
We investigate a decrease of b by [, For 0 < a < b, we derve

Gab
= { definition of G}
(#m=y:a§w5ysb:22+yzr—*f\f)

{ split off y = 3§}
G.a.{b—l)-!-(#:c:a_(_zsb:x2+b2=N)
= {22+ 6% 15 mcreasing in «, a < 6 }

Ga(b-11+0 ifa?+5> N

{G.a.{bw—l)~i~1 fa®+ 2= pN

i

Selution:

[vara,i: int;

ra==0,0

{Linear Search:}

;b:=0;dob*b<N—+b:=b+1 od

{invaziant: 7, A Py, Proof 1, bound: 6 — a}

idoe <

—ifetatbro< Vo aim gpg {Proof 2}

[}a*a—f—b*b)N»—rb:rb—l {Proof 3}
ﬂa*a-l—b*b:N—-»r,a::r-l-l.a-i-l {Proof 2}
§a*a+b*b=N-—»r,b:mr+l,&—l {Froof 3}
131

od

{r=(#x,y:€)5x$y:zz+y2mf¢),Proofﬂ}

2

This concludes the presentation of the solution. This program hi#s time complexity
OV N), Imtializing & by 6:= leads to a program that has time complexity O(N)
which 15 as bad as a brute force searcli in the area [0..\/}?] X {G..v’ﬁ{

136 Slope Search

One may wonder whether the two guarded commands

axa+bxb=N - ra=ri+l atl
axat+bxb=N —rb:=741b6-1

may be replaced by
a*xa+bsb=N—rab=14l,a+l, b-1

24+ 6= N, then
The only way to find out is by caleulation: assume 0 <a<b A a®+ b =N,

G.a.b /

= { definition of G}
(#ry a<zL<y<h:a? 442 = N)
= {split off y =0}
Gab—1)+(#s:a<a<b: 2+ = N) —.
= {split off £ =2 in G.a.(b-1)} o)
Glatl) (-1 + (#y-a<y<t-1: a+y? = N)
+{#ria<e<b: 2+ =N)
(a2 48 =N}
G.(a+1).{b—1) 41

Hence, this replacement is allowed, feading to

[var a, & int;

ra:={0

=0 dobsb < N — b:=6+1 od

idoa<ié

—ifaxgt+bsb< N— g:=atl
Jaxa+b*xb> N— bi= b1
U asa+t+bxb=N—rabi=r+latl, b1
fi
od

8.1.2 Minimal distance

i inimal
Our next example 1s the derivation of a program for the computation of the m
distance of two ascending sequences. It is specified by

The basic principle 137

ffcon M N :int {M >0 A N >0}
f o array |0..M) of int {Fis ascending};

g array[0..N) of int {gis ascending);
var 7 : int;
g

{Tt(tﬂiﬂ$,g:05$<ﬂ(f/\ 9$y<N?ff.m_g.y])}

1

Note that f.o —9-y 15 ascending in x and descending in y and qy~—f.xis descending in
@ and ascending in y. The expression | f.o —9.y|, being equal to (fz—g.y) max (g —
Sz}, does not have these properties. However, as will emerge from the derivations, a
slope search stifl s possible. Since f.z — 9% and g.y — f.x have both ascending and

descending properties, we define .q.b forg<q SMAOSI<S N as:
Gab= (minz,y:a<g < pr AbSy< N ifx— gyl

The post-condition may be written ag

R »r=@goop

and we propose as Invariants

B rminG.a.b = G.0.0
A 05&54’1/!/\05&5]‘1

These are mitialized by a,b,7:= 0,0, 0. Furthermore,

Fo A (a=nf Vb= N)
= { minimum over ap empty range 1s oo }
rminco = G.0.0
{ calculus }
™= G.0.0

fi

This yields aspuard a £ M A b2 N, ForO<a< i A 0 <6< N we have

G.a.b
= { definition of 7}

(minz,y:a<z < M Ab<y<N: ifz—g.y))
= {split off =4}

i

138 Slope Search .

Gla+1)bmin (miny: 0 <y < N :if.a— 9.9
i b2 fal
{ g s ascending, assume g.b 2 |
G.at+l)b min (miny: 6 Sy < N :g.y— f.a) \ .
{ g 15 ascending }
G.(a+1).b min (g.b — f.a)

Hence,

gb > faa = Geb=G(at+l)bmin{g.b— f.q)

On account of the symmetry of the specification 1n f and g, we have
fazgb = Gab= Gealb+i}min{f.a-— g.b)

as well. We now have all ingredients for the solution:

{var a,b:nt;
ra,b:=00,0,0
doa#FMALEN 1
—ifgb> fa —ar= a-}-l!rn{m (9.0 — f.a}
0 fa = g6~ b7 = b+1, v min{f.a — g.b}
fi
od

I

1 and
When we know how to approach these problems, the derivations are rather simple

a program is easily constructed.

Exercises
Denve programs for the following problems.

0 [[con M, N :mt{M>0A NZ{)};-
[array|0.A) ofint {f is increasmg}:
g - array [0..N) of int {g 13 increasing},

var r :int;

cotncidence count
{r=(#7y:0<c<MAUSy< N fz=gy)]

I

The basic principle 139

1 J[con ¥V :int {N >0}
var r:int;
g
{T={#x,y:0§z/\ 05?11$3+y2:i\/)}

I

2. fcon M, N :int {M>0n N2o f array{()..M)x[U..N}uf;’nt;
{fis ascending in both arguments}
var r :nt;
oy
{r=(#z,]:051<ﬁ'ff\DSj(N:f.z.J:(}}}
I
(Hint: (#z.R;h.z:O):(#t;R;Ii.i2{3)-—{#z;ﬂ.—h.z>0)).

3. The Welfare Crook : Thesets U, V, and W are represented by mcreasing integer
arrays fI0.. &), 9i0-.L}, and 2[0..A1). Derve a program for the computation of
an element of Un v 1 W, gven that such ag element exists,

4. fecon N :int {NV >0}
var 7 : bool;
S
{r=(@E3zy:0<zn 0<y:N =27 3v))

I-

5. fcon A :int {M =0} 7 array |0..4) of int;
f(vi:o<: < ps fi20)}
var r ;i
g
{r:(#p,q:OSquSJ‘VI:(Ei:pSz<q:f.i)<?)}
-

6. N points, numbered from 0 onwards, are focated on a circje (in the rest of this
exercise all point numbers should be taken mod N), Point 141 15 the clockwise
neighbor of point 7. Ap integer array, dist{0../V), 15 grven such that dist.7 s the
distance (along the circle) between ponts 2 and 141,

{i) Derive a program to determine whether ihere exist two points at opposite
ends of a diameter of the circle,

{ii) Derive a program for the computation of twe pownts that have maximal
Buclidian distance.

140 Siope Search

8.2 Longest and shortest segments

7
In Chapter 7 we discussed longest and shortest segment problems. Longegf segmert
problems are of the form

feon N :int {N > 0},
var T : ini;
mazseg
{r=(maxp,q:0<p<g<N A Apg:q-p)}

I

i 4 les of
where A 1s a predicate, typically related to some integer array X[0..N). Examples o

such predicates are

Apg = (Vi,7:pgi<gAp<Li<g:Xa= Xj) (X[p..q)i’scoastzf'lt)

_A.p. = (Vi,grplisi<g:Xa<Xj) (X_h:..q) is ascending)

A-p-g = (#z' ip <: <g:Xa=0)<60 (X[p.g}contains at most 60 zeros)
.p. p s : =

I

For these examples, A satisfies (0 < p < g < NV):

(o) A the empty segment is an A-segment
.p.p ,

(1) Apg = (Vs:p<s<g:Aps) Ais prefix-closed

{2) Apg = (Vs:p<s<q:Asg) Ais postiix-closed

Shortest segment problems are of the form

[con N :int {N = 0};
var T ; int;
manseg
{r={(minp,g:0<p<g<N A Apqg:q-p)}

I
Examples of predicates for these problems are

Apg s Bi,,k:p<,,k<qg: Xam0AXFi=1AXE=2)
(values 0, 1, and 2 occur in X{p..q})
Apg = (#i:pLi<g: Xi=0) 260 (X[p.g} contamns at least 60 zeros)

For these examples, A satisfies (0 S p S g < N}

Longest and shortest segments 141

(0) -Apyp the empty segment is a ~A-segment
() -Apg = (Vvs:p<s<q- ~A.p.s) —Ais prefix-closed
(27 ~Apg = (Vs:p<s<yg- “A.s.g) -4 is postfix-ciosed

Note that
A satisfies (0}, (1), and (2) = =A satisfies (©), ('), and (2
When we have a solution to mazseg for predicates that satisfy (0) and (1), then we

have, by applying this solution to the reverse of X, a solution for predicates that satisfy
(0} and (2). A similar remark pertains to mnsey.

In Section 8.2.0 we derive a program scheme for mazseq for the case that (0) and
(1} hold. In Section 82.1 a program scheme is derived for minseg, for which (0') and

(2) are assumed. These schemes are derived by means of the Slope Search techni
In Section 8.2.2 we apply su

the length of a shortest segment X[p..q) that contains at least two zeros, Le.,

Apg = (#i:p£1<q:X.i=U)22

The same problem was solved in Section 7.2, but that solution is not very satisfactory.

8.2.0 Longest segments

Let N > 0 and let predicate A in the range 0 < p < g < N satisfy

() App the empty segment is an A-segment
(1) Apg == (Vs:p<s<y: Ap.s) Ais prefix-closed

We derive a program that has post-condition
R: r=(maxp,g:0<p< g N A Apyg: gp)

Since g-p is ascending in ¢ and descending in p, we define G.a.b for 0<e<b< N
by

Gab=(maxpg:a<p<qg< N A bSgSN A Apg:g-p)
Then R may be formulated as
R: r=Goon

As mvariants for a repetition we choose

142 Slope Search

Py rmaxG.aeb= GO0

P0<<asts N

These may be initialized by a,b,7-= 0,0, —oo. However, since .A.0.0 holds, . byrom

0,0,0 1s also correct. We derive

G.a. N
{ definition of G }

(maxp:a<p< N A Ap N N-p) ‘ X
{ assume A.a.N, N—pis descending in p, e < V)

N—a

Hence,
B Ab=NAAab = R{r=rmax(N—a))
hreh yields & # N vV —4d.ab as guard of the repetition. To determine a condition
w +*

under which & may be mcreased, wedenive for 0 €< a € 4 < V:

Galb
= { definition of G, split olf g =5}
Ga(b+1l) max (maxp:e<p<b A Adpb: bmp).
{assume A.a.b, b—pis descending m p, e < 4}

G.a.(b+1) max(b—a)
Hence,

Aab = Gab=Ga(b+iymax(b-a)
Note that

P A@G#ENY 2Ab) A Aab = b< N
For the case -« A.a.b we mvestigate an mcrease in a.

Due to (0}, we have ~d.a.b = a # b, hence a < b is not violated by a:= a1 in tiis
ue , .a.
case. Wedenve for 0 €a <6< N A - Adab

Longest and shortest segments 143

G.a.b .
= { definition of G, split off p = a}
G.(a+1)%b max (maxg:ia<g< N Ab S9SN A Adag:g-a)
fa<s}
G.{a+1).b max (maxg:6<y SN A Aag:g—a)
({1), —A.ab, hence, Vg:b<g< N ~A.a.q)}
G.la+1})6

i

]

Hence,
~Aab = Gab=G.at+l)o

This concludes our derivation. The program scheme for mazsey is shown below. As
bound function, 2 — g will do,

maxseg: {[var e, v : int;
a,b,r=0,0,0
o b#A N v —Aqk
= if A — = rmax(b—a) ;6= b+t
J~Aab—g:= at+1
il

od
iTi=rmax (N—aq}
{r=(maxpg:0<p<g<na Ap.g:g—p)}

e e B i e s

I

Note that we did not use the fact that ¢ — p 5 ascending m g, only that it 15
descending in p. A closer looi at the range of the quantification in the post-condition
(using the fact that 4 js prefix-closed) reveals that on the one hand the descendingness
plays a role and on the other hand the specific form of the range is important, §

To obtain a final program, one has to replace A.x.4 by a bovlean expression. For
Instance, we may try to add iInvatant ¢ = A.a.b, which is mitialized by c:= true.
Since 0 < a<s <V, this invanant is well defined.

144 Slope Search

8.2.1 Shortest segments P
We now consider minseg and we assume that 4 satisfies

(0"} —App the empty segment is a ~.4-segment
(21 ~Apg = (Ys:p<s<q:-Asg) -4 is postfix-closed '

The following derivation is almost a copy of the derivation presented in the previous
subsection and the reader is advised to compare both texts carefully. We define G.a.b

for 0<a<bi<N by
Gab={minp,g:a<p<g<NAB<SgSN A Apg:g—p)

Then post-condition R may be formulated as

R: »r=G.00

As invanants we propose

B rminGua.b=G0.0
P]i GSGﬁbSN

which are established by a,b,7:=10,0,00. We derive

G.aN
= { definition of G'}
{(minp:a<p< N A ApN:N—p)
{assume —A.a.N, ~A 15 postfix-closed }

oo

Hence,
PQAP]Aszf_!A.ﬂ‘b = R

which yields & ¥ N V A.a.b as guard of the repetition. To determine a condition
under which b may be increased, we derive for0<a <b < N:

G.a.b
= { definition of G, split off g =5}
Ga{b+1} min (minp:a<p< b A Apb:b—p)
{ assume —A.a.b, ~.A 15 postfix-closed }
G.a.(b+1)

Longest and shortess Segments 145

Hence,

“Aab = Gab= Ga(b+1)

Note that

P A (B#NV 4ab) A ~Aab = by

For the CE:SE Aab we investigate an increase in g
Due to (0), we have A.qp = a#b, hence q ;

case. We derive for 0 < g < 4 <SNA Aas < 615 not violated by a:= a+1 in this

G.a.b
= { definition of G, split off p = a}

G-(a+1). min (ming -
fias<g< N .
- {agb} 15 AbEQSNAA.a.q:q«—a)

G.(a+1).b min (ming:b<g< N A Aa.g:g—a)
= {Aab g—ais ascending in ¢}
G.(a+1).6 min (b — a)

Hence,

Aab = Gab= G.(a+1).b min {(b—a)

1 On iu 113 1 & . pIO ;341 Cl]eﬂ]e fOI ﬂﬂflseg 13 shown be oW 5
!h 5 ¢ c dES OLr deZlV tion Ihe
gr 5 h i AUN A

TR T T P i T

minseg: fvarg, b . int;
a,b,r:: 0,3,00
idob#A N v Aqp
—+if-dabp.= b1

fij A.ab = r =+ min {b~a):a:= a1l
od

{r=(minp,q:{igp_<_qSN,_A_p‘q:q_“p}}

I

146 Slope Search

8.2.2 At least two zeros revisited S

In this subsection we apply the scheme for minseg to obtain an algorithm for the
computation of the length of a shoriest segment of integer array Xi0..V) that contains
at least two zeros. For this problem ‘

Aab = (Frragi<t: Xa=0122

Then ~.A holds for empty segments and ~.4 1s postfix-closed. To express .A.a.b as
boolean expression, we introduce integer variable ¢ and accompanying invariant

Qre={(#r:ag1<t:Xa=0)
Then Aab = ¢>2 and ~A.ab = ¢ < 2, This leads to the following solution.

[var e b,c:mt;
rab,e=00,0,0,0
idob#NVe>2
—ife<2— HXi=0—oc=ctl | Xb#0—skip §
(o= bl
lez2— v=rmin{d—a}
if Xa=0—ciz=c—1] X.a#0—skip fi

iarw= atd

od
Compare this program with the one derived in Chapter 7.

Exercises

0. fecon N :mi{N > 0}; X : array[0..N)of int;
{((vi:0ge < N Xi> 1)}

var r :inf;

s
{r=(minp,g:0<p<gsNA(Zr1:pS1<q:Xi)2N:.g—p)}

Il

Longest and shortest segments 147

1 f[con N :int (N2 x- array [0..V) of int:
var v :nd) '
By

{r=(maxp,g:0<p<g< ¥ A Apg:ig—p)}

I

where

it

Apg = (#1:p<i< g:Xa= KXfi-1)) =37
2. f[con N Tt {N >0 x array {0..N) of int:
((Vico<ien . Xinoy '
var r : int;
&

{T=(maxpg-0< .
VSRS gSEN A (Bip< X
H 03) P_z(q,X.t}S(%,qmp}}

How would vou : .)
once ? You solve this problem if each element of

& may be inspected only
3
Let N > 0 and [et X[0.V) be ap integer arra

o=] _ y. Denve a
putation of the length of 5 shortest segment that containg viiggsrii e dtl;E
13y 210 .

Chapter 9

Mixed Problems

In the preceding chapters we showed how to reason about programs and how to derive
them from specifications. Arrays were only used as constants. In the final chapters
of this book we discuss array manipulations and we solve problems by introducing
auxiliary arrays.

A number of programming techniques have been described 1n these chapters. These
techniques can only be mastered by applying them to problems. To encourage the
reader, we have chosen problems that can be solved with the theory of the preceding
section. For instance, all the problems in Section 6.2 can be solved by & binary search
and all the problems in Chapter 8 can be solved by a slope search. In this chapter we
present a mix of problems. It is up to the reader to find out what stratemes are most
appropnate for the problem in hand. Each problem should be studied carefully: often
more than one approach is applicable. All exercises admit a linear solution; however,
for some of them an O(log N) solution exists.

The derivation is as important as the resulting program. Both should not be compli-
cated: exploit symmetry, avoid unnecessary case analysis, introduce suitable notation
ete.

1t 18 not necessary to complete these exercises before going on to the next chapters.

This collection 15 presented here because all prerequisites needed to sofve these exercises -

have been presented.

Some of the exercises are given by a formal specification. Others are formulated in
English. For the iatter, one has to supply a formal specification first.

Mixed Problems

Exercises

0. i[conN:mt{Nz(J};
var r ; int;

5
{7‘:(#p:DSpSN:{Vi:(l_<_3<p:f1.i} =

I-

L fconN:imt{N > 0};
Var T :ond;
5

{rm(Ep,q:OSp<q<N.A.p-}-/i(q)}

A array 10..N)of booi;

(Fi:0< i <p:44)))

4. array [0..N) of int;

S

2 flcon Nt {n > 0} F: arraylo..N) of int;

{/ is ascending}
varr . md;
8

{Tz(#P:Q:GﬁPSP+Q<N_f.(p«}-q}-—-f.p:(}?)}

3. F
For integer arrays flO..N) and gl0..N) relation F= g is defined by

f<g = (3n:0$n<N‘f.n<g.nA(Vi:DSl<n.f.z'=g.i))

The relation ~« is called the feme

ographical
program that assigns to boolean mables 0, o st o pve for

vanables a, b, and ¢ such values that

e=f<gn@=fugal

i

f =g}
4. Integer array FIONL, N >0, is conver, j.e.

(Vi:0<i< N, fa LA+ FL+1))

Derive a program for the computation of (3

100N fa= f(i41)).

149

given f and g a

150 Mixed Problems ('

5 Jeon N, A, B :int {N > 1}; f: array |0..N)}of int;
var x : int; -
S
= (¥p,0:0Sp<g<N . A< (T1:p<ei<gq: fi) < B)}
B
6. In the (z,y)-plane & collection G of M circles is represented by integer array
R[0.M). Circle 7 has centre (0,0} and radius R (R.a > 0). Furthermore, 2
collection L of NV lines is given by integer array X|0..N). Line 1 has equation
x = X.a. Both R and X are increasmng. Denve a program for the computation
of

(1) There exists a line in L that is tangent to a circle of G.

{if) The number of intersection points of L and G.

7. eon N :mt {N > 0}; f - array [0..V) of int;
{f is mcreasing}
Var T int;
5
{r=(#z,y:0<zs<y<N fy~fz>y—=z)}
I
8. N points, sumbered from 0 onwards, are located on a circle (in the rest of this
exercise all point numbers should be taken mod N). Pomt i+1 is the clockwise
neighbor of poiat 1. An integer array, dist{0..V), is given such that dist.i is
the distance {along the circle} between points 7 and i+1. Derive a program to
determine whether four of these points form a rectangle.

9. Array fi0..N|, N > 0, is increasing. Derive a program for the computation of

(Fi:0<1< N fa=i)

10. feon N :mt{N > 0}; f: array[0..N)ofint;
var r: int;
5
[r=(#pe:0Lp<INADLSgS N
#Fr:0Si<p: fi=0)<(Fi:0<1<q: fi=1))}

Mixed Problems 151

11. For integers I and ¥V, 0 < K = N, and nteger array f[0..V), one is asked to
compute the number of segments of length X on which f s ascending.

12, Sets V and W are represented by mereasing integer arrays £{0..M) and gi0.. N},
MZ0ANZ20 Derivea program with post-condition '

b=VCW

13. For integer array FI0.N), we have O =0 A F.N #0. D
establishes for integer , d e 8 program that

fe=0A f{ztl) 0

14, Fm: mteger array_X [GN). N > 0, determine the length of a longest segment on
which X attains its maximum aé most twice, i.e., a segment [p..g) for which

(#iip<i<g:Xo=(max;:ip<jy<q:Xj)<2

15. For imnteger array X [0.¥), N > 0, determine the length of a fongest prefix of X
that contains zeros only.

16. ffeon A, BN :mt{A>1 A Bz1aN>z1)
var r :int;
s
{r=(minp,g:1<p< N A 1< g< N:jar— Be)}
)

Chapter 10

Array Manipulations

10.0 Introducticon

In the preceding chapters arrays are used as constants. We now introduce statements
that may change the value of an array. As we shall see in the following, these statements
have quite complicated definitions. Thus, precision in invariant calculations is vital.

In Section 10.1 the array assignment s introduced. 1t is of the form i, B = F, where
f 15 an array and 5 and F are expressions. If differs from the ordinary: assignment
i that its execution affects the value of an entire function. In the definition this 1s
reflected by a substitution of functions for functions.

In Section 10.2 we discuss the swap operation which mnterchanges two function
values. Many programmung problems can be solved by means of swap operations on
the arrays involved only. Sorting is one example of such a problem.

10.1 Array assignments

Throughout this section N s a natural number, h{0..N) is an 1ateger array and &
and I' are mteger expressions. The array assignment is of the form h.J0:= F. Its
operational interpretation is ‘replace the value of A.E by /' Before we present &
farmal definition we show by a small example how much this assignment differs from
an ordinary assignment and how easily one may draw incorrect conclusions.

Suppose 1.0 = 1 and fi.l1 = 1. Then A.{f.1} = h.1 = I and statement h{hl):=0
15 equivalent to f1.1:= 0 and will result m A.{k.1) = .0 = 1. We conclude that

{(hO0=1Ah1=1} A(h1):=0 {h(h1)=1}

Array assignments 153
18 correct. This simple example show i
; s a difference between an arra as
. - - Sz 3
an ordinary assignment for which we hay, , for example ¢ srment and

{true} =0 {r= 0}

iza;zenjlygh.;? = F changes the value of but not necessarily the vaiue of the ex-
;0 : cgl 1LE. To express the change in & function, we introduce the foilowing notation
TU =2 <N and integer A, the function flz:A); 0N} - Z1s defined by '

h(z:A) = [ha ifr1#z

14 ifi=g
We pronounce h{z:A) as ' except |
tAY g Pbin z where its value 1s 4", As an example, let A
_ . , 0.3
be defined by .0 = Lhl=4, 2= 6, then A{1:5) 1s the function ’ -
A(1:B)0=2
h{L:5)1=5
h{1:5).2= ¢

With this notational convention, b.F = F may now be defined by

(PYAE = F {Q} is cquuvalent to (P = O(him h(E:F))]

where, as usual Qh:= W{E:F)) denotes G ich j
, : : n which 4 1s replaced F
example of the use of the rule of the array assigninent, we ;lijze L) s an
{ho=1Ah1= 1} h(hl}=0 {h(h1) =1}
Proof:
Assume AO=1 A hl=1, We derve

(h (k1)) A= h(h.1:0))

= { substitution }
hh.1:0).(h(k.1:0).1)

= fhi=1}
R{1:0).(h{1:0).1)

= { definition of h{z:4),1=1}
h{1:0).0

= { definition of h(z:4), 1 £ 0}
ho

i

154 Array Manipuiations
It can be seen that for many array assignments, it 1s difficult to predict the outcome

without calculations. Fortunately, there are many cases in which the effect of h.E = F

can be easily computed. P

s

In the definition of z == F conjunct del. B cccurs. For array assignment A5 == F
we require that I and F' are well defined, and that the value of F is in the range of 4.

More formally, def.(h.E) s defined by .
[def.(L.F) = del. B A 0L E < N|

and the formal definition of f.E:= I 1s

{P}h.E:= F{Q} is equivalent to [P = del.F A def.(h.B) A Q(h:= A(E:F))]

In terms of weakest pre-conditions we have
{wpfhB:=FL.Q = del.F' A def.(h.E) A Q(h:= h(E:F})]

In calculations conjunct Q{h = A(E:F)} is the starting pomnt. One should, however,
be aware of the cther two conjuncts too.

Multiple array assignments are not allowed, If they were the program fragment
z,y:=0,0 ;hz, hy:=0,1

would establish h.0 = 0 or 4.0 = 1. This problem may be sotved by the definition of an
order (for mstance, from left to right) in which substitutions are performed. We prefer
to avoid it by not allowing multiple assignments in which an array sssignment occurs.

We present two examples in which we use the formal definition of the array assign-
ment. Then, at the end of this section, we present the 'simple array assignment rule’
which simplifies calculations in cerbain cases.

As a first example of the derivation of a program 1 whick array assignments are
used, we solve all zeros specified by

[con N :int {N > 0},
var ki ; array j0..N)of int;
all zeros
{{(vi:0<:< N :Ai=0)}
B

Array assignments 155

I{EPIQCEmEHt Gf the constant IL bY tize inte S var IZ].E)IE i lEEldS to nvariants F and
= 5 H 0 an

By (Vi:051<n;h.z=0)
P, . 0<ngN

which are established by n=

assumuing Fo A P, A n #N,

(Vi:05i<n+1:fz.z&0}

= {spﬁtoﬁ'izn,ﬂgn}
(Vi:051<n;fmk0) Ahn=g

{R}
{Vi:G§z<n.—h.z==k.i) Ahn=0
= { definition of f(z:d) }
(Vi:0<i1<n:ihi= ”(n:0).4) A b = A(n:0).n

{import ¢ =5}
{(¥i:p St<ntliha= Afr : 0).4)

I

i

The last line says that replacing A by h(n:0}, ie., &

This yields as soiution to alf Zeros 7:= 0, establishes Py(n:= n+l1}.

f[varn : int;
n={
idon# N
— hn==q
ni=nel
od

[[con.N cmt{N >0} X, array [0..N) of int:
{(Vz:0§z<N=15X.1§6)} '
var k. array [1..6] of int;
frequency table

Vi z tha = : 3
;;,{(1£156:} (#k.05k<N.-X.k=z)}}

156 Array Manipufations

Replacement of the constant N by vanable n yields mmvariants

B {Vi.151SSift.tm(#k:()ﬁk(n;){.k:i)) .
P. 0<n<N

Substitution of n = { into Fy yields
(Vi:1£156:h2=0)

sent
for which we have seen a solution (viz. all zeros). For the increase ci L Zysl, ‘;\;eg;::e
the following derivation. Assume Py A Py An# N, Forany:, 1 <1 <6,

(#k:0<k<ntl. Xk=i)
(splitofi bk =n, 05} .
(#h:0<k<n Xb=)+# (Xn=1)

= [case analysis }

i

[(#E:0<k<n. Xk=4) if1# Xa

V(#r:0sk<n Nk=40)+1 ifem X
= {FR}

[ha if1: Xon

| A(Xn)+1 ife=Xn

{ definition of h(z:4) }
B(X.n:h{Xn)+1)a

Hence, h has to be replaced by A(X n: £.(X.n)-+1}. We arrive at the following solution
to frequency table.

[[var = : nt;

n:=0
iivarm:mt;m:=1;dom# 7 — hm=0;m:i=m+1 od]
idon# N
— h{Xm}i=h{Xn)+1
;7= Tkl
od

I

- 05, we often
We now mtroduce a simpler rule for the array assignment. As in all zeros,
encounter a situation 1n which

(Vi:0<t1 < N:ha= Hi)

Array assignments 157

has to be established, where ex

pression H is such that » does not oceur 1n H. This
may be solved by

introducmg integer vanable n and mvariant
P. 0<n< N A (Vi:OS_z<a:h.1=H.i)

and the problem amounts to finding integer expression B such that

{PAn+#N} hAn:=E{(Vvi:0< ¢ < n+i sha == HA))
We derive, for 0 < n < N,
Vi:0<:<nti:hg= Haij(h= h{n:E))
= { substitution, & does not oceur in H}
Vi:0<1<n+f: Muf)a = Hi)
= {split off 1 = n, definition of R{a:A)}
(Vi:0<i<n ha=Hi)A B=Hn
Hence, we have the following rule.

Simple Array Assignment

-

If k does not occur in i, then

{PAnsNA E = Ha}
hon=F

{P(rn:=n+1)}
where P 0<n< N A (Vi:0§1<n;h.1=H.i}

Substitution of £ = 0 yields the salution to all zeros. It may be presented as foliows.
[varn : int;
7= ()
{invariant: 0SnsNA(Vi:0<ign.
idon# N
— hm=(

ini=n 41

ka2 =0): simple array assignment }

od
{(Vi:GSz<N;h.z=0)}

158 Array Manipujations

Exercises
Derive sofutions for the foliowing programming problems. .

0. [con ¥ :mt {NV > 1}; § - array[0..N)of int;
var h . array [0..V) of int;
summadion
{(VEOS k<N hk=(5:1:051<k: f4)}
J

1. feon N :int {N > 1}; f . array[0..N)of int;
var i : array |0..N) of int;
decompostion
{(VE:0S k<N fhk=(D1:0<1<k: hi))}
12

2. fcon N:mt{N > 1}
var f. array {0..N)of int;
{¥i: 02t < N ha = Fi)}
decomposition m situ

{(VE:0S k<N Fk=(8i:0<1<k:hi)})
Ji

Note that I is a specification vanable (cf. Section 2.0) and not a program variable.

3. con NV :int {N > 0}; X . array[0..N)of int;
{(Vi:USz(N:DﬁX.z(lOU)}
var £ : array [0..100) of int;
s
{Vi:0<1<100: bt = (minp: 0<p< N A Xp=::p))}
I.

4. feon Nt {N >1}; X array [0..V) of int;
{(Vi:0<: < N:0< Xa<100)}
var r :int;
5
{r={maxp,g:0<p<g< N A Xp=X(g-1).q9~p)}
).

{Hint: introduce array £f0..100) and use the previous exercise.}

5. Denve & program to determine for natural ¥V the fre
i the decimai representation of iV,

6. [con ¥ ;g {iv > 0} X : array[0..n) ofint;
var i oarray [0..N) of int;
g

{(Vi;OSz<N:!':.zm(max3:Gg;gz:X.j))}

2

7. Prove:

If & does not occur i H or B, then

{Vitet B ha= Hi) A F=Glh:= R{E:)Y}
hE=F

{Vici g B hi= Hi} A W = G}.

and

If & does ot occur in H, E, or ', then
{(Vite £ B jie = Hi)}

hE = F

{Viiid By Hi)ARLE = Fi.

10.2 Swaps

Many programming problems tavolving array mampulations can be sg
changing array values. Given integer atray A{0..V)
we zbbreviate the program fragment - ’

_ lved by inter-
and integer expressions B and

[varr:mt r= s p hE=hFhfm T}

8y assignment, this operational interpretation does ot help very much

To express its meanin formall, i
e e Moy Bg) by Y, we extend the notation fi(z: A} to two arguments and

e
i ‘%’% S

160 Array Mampulations

Ve
[itizznssy :
Mzy:A,Bla={ A ifi==z
oy la i=y 4

Then swap.£. 7 may be characterized by

{P} swap E.F {Q} 15 equivalent to ‘
IP = def,(LEY A del.(W.FY A Qlh=R{E, F: A.F h.E})]

g n & (i.e., h does not cceur 1n B or F} tiun.gs are
” *'?“E - angt‘.{l:e‘i:f;zt ;59‘1;93:1—;3 di!ﬁgzult to predict the effect of a swap wl;thzls:
e e ary cz.iiculnnens. This s illustrated by the Eoilowmgt example. ! €
pﬂrmrmmgdtfelniciss'rhen swap.{h.0).(h.1} is equivalent to swap.0.1 which establishes
;:g - 2 i:d ;11 == D'. In particular, we then bave h.{h.1] = 1.0 = 1. Hence,

{h.(h.0) = 0} swap.(h.0).{k.1) {h.(h.1) =0}

ions is [i Vi it
lnes not held. So u nmve operational interpretation is liable to be faulty. We leav
doe: . ‘ i
as an exercise to the reader to provide a formal proof of

{h0=0nA hl=1 (hence, h.(k.0} =0}}
swap.(h0).{h.1)
{h{h1) =1}

.
criunaledy, nd if we restrict ourselves to swaps 0i the iorn
Fort tely, the situation s not so b { the §
swap.B.F in which & does uol aceur 1n E or 7 Tor this case it 15 ensy to derive the
P Ly i Ll
fU“G\V]ng rule.

Simpie swap statement:

H & does not occur 1a £ or F, then
{Witi2 EAr#Fiha=HiahE=AAhF = Bj
swap. [2. F
{Vici#E EAt# Fiha=Hi)ARE= B ALF = A}

ici i ions
We will use this rule frequently, without explicii reference. In the foliowing subsection
¢ ; T
we present examples of its use.

o

Swaps 161
10.2.0 The Duteh National Flag

As a first example, we denive 5 program that swaps the values of an array with elements
red, white and blue, in such a way that its final value is 1n accordance with the Du

tek
Nationa! Flag, Its specification 15
[con N :mt{n > 0}
var h: array j0..N) of fred, white, Blue
Dutch National Flag
{(3p,q:ﬂ£p5q5N:(Vi:DSt<p Dt = red)
AViip<i<g 1 ha= white]
AViigSi<Niha= blue)

3

H
I

m which anly swap operations are allowed as aperations on .

It seems hard to esiablish this post-condition without being able to indicate where the
final boundaries of the celours are, Thetelore, we mtreduce va

finbles » and w and we
derve & program wit) post-condition

R, (Vi:(}igt<r:h42md]
AVicrSi<w:ha= whitg)
AV wSi< N hg e blue)

There are severai ways tn which

It may be weakened. A passible invanant 1s (intro-
ducing mteger vannhie by:

(\!’i:951<r:h.:=red)
AVitrSi<wiha= white]
AVitw<i<hihy= blue}

which is established by 1w, b= 0,0,0. This choice, however, leads to
vlicated program, We have lost too much
determined, complete symmetry canpot bie
ants B and Py, defined hy

a rather com-
symmeiry. Sinee three parts have te be
obtamed. Therefore, we choose as invari-

Fy. P,/\P“APQ
Poogrsuwchen

with

T T e o g e

o

162 Array Mampulations

P, (¥i:0<1<T1:ha=1ed) i
P, . (¥i:r 1< w:lut = white)
B (Vi:b<1 < N:ha=blue) e

Fy and P are mnitialized by r, w, b:= 0,0, N. Furthermore,
FBAaw=hi= R ;

This yields w # & as guard of a repetition. For w < #, the elemenis of |w..b} are
candidates for inspection. T'wo choices are obvicus: w ead é—1. We choose w and we
discuss the other possibility Jater. This leads to a Brst approximation of the solutioa:

[fvarr,w, b nt;
o, b=0,0, N {invariant F; A £, bound b—-w}
dowsb
-+ if w=red — &,
| fiw = white— 8,
] fwr=Dhlue — &

f
od ;
E
Noie that
r= ‘the number cf red elements that ave been detected’
w — 7 = ‘the number of white elements that hove been detected’
N — b = ‘the number of blue elements that have been detected’

Hence, S will contaun the statement r:= r+1 and alse w:= w+l, keeping w ~ ¢+ -
wmvariant. Similarly, e expect that S, will contain the statement w:= w+1 and S}
will contoin b:=b—1.

Statement S, 15 the easiest one, since

Fe A Py A haw == white = (Fy A Py }{wi= wil}

Heace, for 5, we choose w = w+1. Next we consider Sy, which has how = bluc as s
pre-condition and for which swap.w.{b—1) is appropnate. From r € w < b we infer
that swap.w.{b—1) does not affect P, Py, or B, and we have

Swaps 163

AP, AR A'm<fu'\h.w=blue}
swap.w.(b—1)

{PAPLAR Awes A Bfb—1) = blue}
jhimb—

{P,APmAPLAwSIJ}

Hence, for 5, we clioose sw,

condition ap.a(b—1) b= hoof

- We are loft with Sy with pre-
B AP, AR A WCh AR = ped

Statement, swa
: P-.r seems appropriate for establishi :
be said about Ay 7 From P, we infer reiatt:,ﬂ;ﬂi :DET: o e tat can

7= w V k= white. This yields two cases, = White. or, equivalently,

Case (i} re=w

{PAP. AR A r=w<hA hw = red}
SWap.w.r

{FP. AP, A rEWCHA h.r:red}

N W=l gl

{FEABAr=y Sk heace, P A B, A P,
Case (ii): hr = white

{P,APwAﬂnw<bAr;.w
swap.uny

{PeAha=red A Virr+l<icw:figs
PTywim]]

{P,APwAﬂ,Awgb}

=ted A Ao whitgf

white) A hw = white A PoAw< b}

We conclude that SWAD.tw.r 11, 1

=14k,
fogether, we oblmg the followimg w115 a good choce for S,

program. v Taking all preces

164 Array Manipulations

[var r,w,b:int;

r,w, b= 0,0, N {invariant Fy A P, bound b—w} P

wdow#b
wa if haw =red — swapaw.or r,wi=r+l,wtl
| Ao = white = w:=w+1
[Aw =blue — swapaw.fb—1};bwb—1
fi
cd

This program has time complexity O(N). When the colours are uniformly distributed
then 2V swaps are performed on the average. If one chooses to use h.(b—1) mstead of
h.aw then a program is obtained whose execution takes N swaps on the average.

]

16.2.1 Rotation

In many problems that involve array manipulations the individual array elements do
not play a specific role, and these problems may often be expressed, far instance, in
terms of segments or sequences. In this subsection we solve such a problem by first
deriving an abstract program. That program is then refined inte a program-in terms
of array aperations.

Assume that ar mieger array AJ0..N) and integer constant K, 0 € K < N, have
been defined. The problem 1s to rotate A over K places, using swap operations only.
A formal specification is

feon K, Nt {0 £ K < N};
var fi . array [0..N)of int;
{(Vi: 0t < N ha=Hi)}
rolalion
{(Vi: 0<: < N h{{i+K)mod N} = H.i)}
}l?

m which oaly swap operations are allowed on &.

Note that H is a specification variable (cf. Section 2.0) and not a program variable,
1.e., H may not occur in statements. To eliminaie mod N, we rewrite post-condition
R as

(Vi:0<1 < NI (it K) = Hi) A (Vi. NwK <1< N . h(i+K—N) = H)

Swaps 165

or, equivalently,

hK N) = HO.N-KY A RO.K) = HIN-K N}

A . .
hyp;{fu;enr;tfg}[szz}ls }J;Oj)\}!)ai;} can bestated in terms of sequences, Let us denote Hi0L N
X ~K.. ¥ Y Furthermore, catenat : i 7 fux
X , 1on of sequences is d
position, for wstance, Hf0.. N) corresponds to XY The empty seq:eras:?:c;eﬁj(;:ucft—
ed by

[], and the iengih Qfse(]iie ca D i no e{i as i U !E; 'IEI[HS seqluen i £
It 15 dE £ &
i . 0{ qliences I]E proi)] H

{h=X ¥}
rofation
{h =YX}

where X and ¥ are as defined above, W
pDSé;-CDndiiion can be established easily,
of Xand ¥ m & yields A = VX,

When LY < LY then ma i
, . y be writt = X
UV =V, and we have to solve e b= Xy

hen X and ¥ have the same length then the

Indeed, swapping the corresponding elements

V., where LU = (X and

{h=XUV A LU= LXY
rofalion

{h=Uvx)

Let us denate the exchange in h, A = ABOD of se

same length oy Sy oSS e quences 5 and € that have the

this problem may be reduced tg solving § in

th=XUV AYX =UVX A 1X = L1}

SWAP.X.U
{h=Uxv}
5

{h=Uvx}

Le, XV has to he transfor
7 med mto VX, a nrobl I
oo hes o . + & problem that 1s of the same fo
L’}f; o amli"r;)z; 211!5 i’cmt one may start the discussion again and consider{?;a:f:azt:
< V& LA Such an mvestigation lsads to the following mvariant:

P h=AUVE A YX = AVUB

Le. i : i
y to establish the desired post-condition, If and v have to be interc

mitially h = XV, P s established by renged. Since

166 Array Mampulations

AUV, B=1],X Y[
Furthermore, we have

PAU=[]vV=[)= =YX
This yields the {ollowing solution:

AUV B={LX Y]
{invanant P, bound: LU + LV}
idoU#[] A V]

—if LU 2 LV .
— split U U = Ul A LU =13 B
{h = AU3U1VB AV e AV‘UQU]B}
(SWAP.ULLV

{h.: AUgVUlB AYE e J‘lVUQU;B}
;U,B:"—-“ Uﬂ, U]B
{h=AUVE A YX = AVUB}

pLv iU ,
[! — split V.V =V, A LVy=1LU

{h = AUV)1B A YX = AV;V,UB}

T SWAP UV,
{h=AWUViB A YX = AV,KUB}
i AV = AV, W
| {h= AUVB A YX = AVUB)
| fi
od
{h=YX).

I . V,and B
To encode thus algorithm mn terms of array £, we represent sequences A4, U, V,

by integer values a, b, k, and {, such that

A = h[0..a)

B = hjb.N)

U = hla..a+k}, hence, LU =
! V' = h[b—L..b), hence, LV =

Swaps 167

These relations are called coupling wvariants. Note that gif = ~{ should be 3
coupling invariant as wefl, In terms of a, b, k, and {, the algorithm is

fvar o, 5, kL int;
ab k= ONN-K K
dok#£0 AL #0
—if k>
—fvarn it ;n= sy idon g SWap.TL(n—{} ;n = g od]
Thi= e d b= gy
Tizk
— [var n:int = a don # ghh — swap.n.(ntk) ini= ntl od]
=ik o= gk
&
od

]

To determine the time complexity of this program, we add the auxiliary vanable ¢ to
record the number of swaps performed during its execution. We leave out the variables
that are not refevant to this discussion. This yields

Ivark f,¢. int; Il
k= N-K Kit:=0 ;E
dok0Al#0p !

SRRl b=t e g
H'[Zk—*t:=t+k;l:z[—k !
" f
ad

I /

!
|
|
{
!
i

In this program, we recognize the algorithm for the computation of a preatest cominon
divisor. Note that U4 &+ 1 15 constant during execution of the repetition. Initially, it
bas value 0 + K +N - K= N hence,

t+k+i=nN

15 an mvariant of the repetition. What can be said about the finaj values of & and { 7
With respect to £ and {, we fave as mvariagt

kgedl= I ged (N—F)

168 Array Manipulations

and, since Oged @ = x ged 0 = £ = 540, we have as post-condition

k+!l=Kged{N-K)= KgedN
and, since t+ k + { = N, we conclude that N — {K ged N) swaps are performed.

Exercises

Derive solutiens, with time complexity O(N), to the following problems. The only
array manipulations allowed are swaps.

’ 0. jeon N :int {N > 0}
var h : array [0..V}of int;
5
{(Bp:0<p < N:(Vi: 01 <pha<0) A (Vitp<e <N hi20))}
I

1. [eon N 11t {N = 0};
var b : array [0..N} of int;

s
f(vi:0<1 <N Awmod2=0:himod2=10)

v{¥i:0<1<N Armod2=1famod2=1)

}
i-
2 flconk, N:int{d < k< N
var i . array|0..N)of int;
N
{hk=(max::0<1 < N:hi)}
I
3. feonk N :mi{0< k< N}
var h : array {0..N)ofint;

s
{(Hp,q:0<p<g<N: (Vi1 0<i<p th1<hk)
A{Vi:p<i<q :ha=hk)
AlVi:gLi1 < N:hae> bk}

Swaps 169

Derive solutions, with time complexity O(N?)

array manipulations allowed are swaps, » to the following problem. The only

4 ffcon NV :int {N > 0};
var i . array fﬂ..N)ofint;
sort

jl{(‘u’i,J 0g1<; <N A1 < hy)}

pt T]3 1 & Epet a L& i nvanants fo the outer repe-
lon wi hln I itl £
U € a repetitio wit 1813} nd Ci%O Se 85 arLE
1 n Iy
fition .i{] A J 1 Elﬁd as invariant 102 tiie mnner [epetltlon Q Wl'lel'e

Pl 0<ngN
and
(i) 5 (Vi’1:0$153<n.f1.15}1.j)

Q: {Vi:kgign:h.igh.n)

(i) A - (Vz‘:{}52<n:(\7’3:25)<N:h.z£h.j))
Q- {VJ:ijSN.fl.nSh.j)

(iit) A : (Vi:B£1<n:(VJ:zSJ<N;h.z<h.j))
o (V}:nSJSk:h.nSh.j)

£
3
¥

B
v
¥
i
i
v
5
i

S T e

T Rt Akl oo e i

Introduction 171

these elements and only one of these 15 ascendin
two possible outcomes and, hence, after £ com
To ensure that all Nt arrangements can b
£ > Yog V!, and from mathematics
least C % Nlog N for some ¢ > q,

Chapter 1 1 A comparison-

In Section 11.2 we present (2

g Each comparison of twe elements has
patisons we have 2% possible outcomes,
e distinguished, 2% must be at Jeast V1, Le.,
(Stitling's formula) it is known that log Nt s at
We formulate this result as follows,

based sorting algorithm has time complexity of at [east O(N log V).

(Nlog V) sorting algorithms. An example of a non-

comparison-based algorithm is bucket sort. This algorithm is applicable when the
N values of & are within a small range, say i0..K). Using a frequency table {cf. Section
SOI‘tIIig 10.1), the frequency of each va i

; , leading to an algorithm that has time complexity
; O(N+K)
; The sorting problem discussed m this chapter has the following specification:
: .0 Introduction :
11.0 if th cavs fcon IV :int {N=1h
. . i 1y |
ramming problems involving arrays admit efficient sglatson.s 1? these array var b array[0. V) of int;
Many pmé;' Examples are Binary Search and Slope Search. TE!JS: is one rea;s'ﬂn : sort
:,;e tasczifesil;i;ting algorithms interesting. Another reason is %ha% solving the Z?Srcullﬁ (Vi) 0 <2< 1< hi< b))
abgm 15 & nice illustration of our programming techniques. In this chapter we o] ’ T h ‘
o ezgitizag algorithms, i.e,, aigorithms that establish asceﬂdj;lguess of an mte’:i;rzzgoﬁ |
501 v ene :
: f the array (bags are a g L . .. B . !
without changing the bag émallizzet)csit‘:;“zu?ﬁple occurrﬁgﬂces of an element). The : it which only swap operations are allowed on £,
of sets in the sense that a bag may ations to swaps. » In solutions to this
latter requirement is met if we restnct the array oper :

problem, we often encounter the following statement
3 0<i<Nand0 < < N):

Let 1{0..V) be the integer asray to be sorted. Define, for 0 < p < N and 0 < g < IV, { =7)

inversion.p.g by Hhi<hg— skip

i
i ﬂ fha> fl._} — sWap.1.j
inversion.p.g = p<g A hp>hyg - .
;
‘i : pgq) =1
‘3 ‘Array £ 1s ascending’ 15 equivalent to (#p,¢:0 < p < g < N : inversion.p.q) for which we have
! f inversions 15 at most) .
! e o Notrue)=(8i:0<1< N)= %N(le). Swapping two P
| AR inve by at most 1 and so we conciude:]
it neighbours 1n k decreases the number of inversions by a i< kip
i - ha>hi— swap.z.
A sorting algorithm in which only neighbours are swapped has time com f[i] 7 D7
plexity of at least O{N?), o

i i 2 ived.
In Section 11.1 sorting algorithms that have tulne cotnplexsty :;(szd}tzz dae:::v;o[: i cquivalent 1o
i i ity if elements are sw .
t be said about the time complexi ‘ ;
Eflgzabzz?s? To answer this question, we ust;v I;h(e fio}[o?n‘g Iz;rg};;::;t. fi.?:;: r;:s.;sz:} . P = Olhem R o o
i actorial} di :
elements of & are different. Then there are N1

e e oo o 1 0TS i & 7

172 Sorting

11.1 Quadratic sorting algorithms

In this section we denve some O(V?) sorting algorithms, not because of their nsefulness,
but to illusirate the ways in which they may be derved and o show what kinds of
problems are related to sorting. One should not try to memonze them and we do
not supply average-case time complexity denvations, nor do we supply figures that
compare these sorting algorithms with respect to some test inputs.

The post-condition B of the specification of sort may be rewritten i several ways,
for instance, as

(Mi:0<i< N: hii-1) < hi)
(Vi,g:ﬂgzc_ycN:h.:gh.j)
{Vi:ﬁs_z<Nm1:(Vj::5_7<N:h.z§h.j))
Each of these expressions may be generalized in severnl ways to obtain an invanant. In
the follawing subsections we choose one of these and denve a corresponding algorithm,

leading to wmsertion sori, selection sorl, and bubble sort respectively. These are just
three of the better-known quadratic solutions. Otlier investigations of this kind are left

to the reader.

11.1.0 Insertion Sort

We choose as post-condition

B (Mi:05:<7 < N:haghj)

Repiacing the constant N by integer vanable n yields mvasiants P, and P, defined by

Fy. {‘di,g:ﬂgz<1<n:h.15h.j)
»m 1gnsN

which are established by nis= 1, As gunrd of 2 repetition we choose 1 # N and as
bound function N—na will do. For t < n < N, we have

Pn=nil) = (Vi,7:02: <3< a+l: ke €)
which equals Fy apart from 3 = n, e, P can be written as
(Wi, 7:0<e <y <ndl Ag#n:hr<hg)

‘We generalize this expression, introducing the integer vanoble k, to

Quadratic sorting algorithms 173
Qo: {Vi,2:0<1<3<ntl Ar#Ekiha<ig)

which 15 mitialized by k:
y k= n. Ferthermore, ;
because of the transitivity of <, we hove, {c‘:rcfn<Akk<m;:0 = Al

= n+1} and also,
Qo A ALE=1) S hk = Pfni=n+])

as well. Hence,
QoA (k=0V h(k—1) < bk} = Py(n:=n+1)

Forthecase £2 1 A A(k—1)> hik we mvestigate a decrease of & by | and we denve

G

{ definition of 9 }
(Mi,p:0<1 <3 <nsl Ag#E Lk ha g by}
{ definition of max }
Vi:a<g N
(Vj _J<n+1/_',u#L.h.j:(maxx:BSzgg:h.i))
= {runge split }

(:J::OS]<k-—1:fl.j:(mﬁleﬂﬁzsj:h.i}}.n'\
(Vitktl < <atl:ihy=(max::0<e<:44) A
Elk-1) = {max1:0 £+ € k=1 : hi)

The first and the second conjunct of the last line of ¢

swap.(k--1).&. For the third conjunct, wo have his derivation are not affected by

hik=1)= (max1:0 <1 < k-1 hi)
= { max caleulus
hik—1}maxhh = (max:: 0 <1 < &k ki)

Hence, if h.(k—1} > k.k then swap.{k—1).k establishes
hk=(max1:0<:<k: hi)

and it i
it can only falsify h.(k—1) = (maxz:0 S 152 k—~1: ki), frem which we infer
{QonkziAhE-1> bk} swap(k—1)& {Qp(k:= k—1}}

One may be tempted to translate this result into the

‘establish Py{n = n4+1}: following program fragment for

174 Sorting

[[var & : nt;
ki=n
ido k£ 0 A A{k—1)> hk— swap{k—1).k;k:= k—1 od
-
However, the guard £ £ 0 A h{k-1} > a.k is not defined for k = (0, We sclve this
problem by defiming the bounds for & by

Q]l ESkSn

and taking case & = 1 out of the repetition. This leads to

Insertion Sort

¥varn :int;
=]
idon# N
— [[var k: int;
k=mn
sdok# 1 A Afk-1} > bk — swap{k—1).k k= k-1 od
;i 0> ful s gwap 0.1 | 5.0 < AL -+ skip 6
]
g bl
od
1

When this program is executed and & 1s mitizlly decreasing then 2N{IN—-1) steps are
performed. When £ 1s initially ascending then only N steps are pesformed.

11.1.1 Selection Sort
We write the post-condition of sort as
R (Mii0£:1<N:(¥Viie€7< N:haghg)

We replace the first occurrence of NV by integer vanable . Replacement of both
occurrences of NV gives rise to Insertion Sort, as the reader may verify. Thus, we
propose wvariants Fy and P, defined by

5. (Vi:051<n:(‘d]:15j'<N:it.z§h.j)}

P: 0<n<nN

Quadratic sorting algorithms 175

We derive for ¢ LSn<y:

Blni=n41)
{ substitution }
{Vi:DSi<n+1:(Vj:sz <N :ha g hg))
{splitoif::n,{)ﬁn<n+i}
BA(¥iing; <N hn<hi)
= { min caleujus }
B A ft.n=(min3:n5]<N:la.j)

I

il

Heunce, a possible solution to ‘establish Fo{n 1o n+1) is
f[vara: int;

es h 3 < < N Al = (¥ 7 7 - .7
- : < N h W tho t a.
tab S1 L [a (k1 <) 1 ut ch z}g{ng h

I

N .
! the _thatsswap..n.a does fmtf. aﬁ"fact Fy. A solution to the problem above is obtained b
PPyIEg Searching by Elimination (cf. marlocation in Section 6.3} with invariang ¢

nSasb<N A {min;:n«<_;,-<N:!'z.j)=(min_7:aS_7gb:h.j)
Thus, we obtain the following solution, known as Selection Sort:

f[varn:nt;
n={
idon#A N
— [vara, : mt;
a,b=n,N—1
idoa#
—ifhe<hd—bi=pyg
Jhé<tiamg.= a+1
il
od

iswap.n.a

(= aab]
.od

I

This program will aiso take LV(N_1) steps. The number of swaps is V

176 Sorting

11.1.2 Bubble Sort

Our final exemple of an O{N®) sorting algorithm 15 known as bubble sori. We choose
the same mvariants as we did for Selection Sort:

Py: (Vi:0gi<n:(¥j:aS7<NihaShj))
P 0gagN

Then (cf. previous derivaiion) we have
Pylni=ntl) = B Akn={ming:n<3<N:hj}

Instead of compuling a location of the mmmum of kfn. N}, we replace the last
expression both cecurrences of n by integer varmble k and we define Qg and @, by

Qp. hk=(miny:k<g<N:hj)
@G n<ksN-L

which are established by k= N—1. We denve

Ga
{ definition of Qq |

hbk=(mng: k<)< N:hj)

= { Leibrz §

h{k—1}minhk = h(k-1)min{miny k57 < N:Lj)
{ caleulus }

hik—1)minkk = (ming: k-1 <3< N 4j)

W

Hence, sorting i.{k—1) and Jk establishes Qofk = k—1)}. This yields as solution a
program knows as Bubble Sort, whick 18 presented below. Execution of this program
takes (N1} steps. When the selection amounts to skip 1 each step of the mner
repetition, we may conclude that hn..N) 15 sscending, and, henee, R holds. More
precisely, we introduce boolean varable b and add nvanant P; .

. b = hn.N) s ascending
Then P A b = R, Towmvananis Qy and G we add

@y . b = hik.N)1s ascending

Quadratic sorting algorithms 177

This rf‘:suits it & second version of bubl
execution of this version tukes ¥ steps
Buhble Sort (4] ‘

le sort (Bubble Sort (1)). For ascending arrays

[varz:my;
n:=0
idon# N
- {var & : 1nt;
k= No]
idok#n

=i hk—1) < hk - skip

0 -1} nk — swap.(k-1}.k
A’

Bubble Sort (1)

[[varn:int; & : booi;
1, b= 0, false

idon# N A ~f

~+ [var k : ity

kb= N-1, true
dok#n
— P A{k=1) < bk — skip
J bl > kit — boss false jswap.(k—1).k

il
od
thi=k—i
!
H R S

od

:
H
1

178 Sorting

A - . B : - . lv. ;1
1 y il d f I BOY BT lative ¥
Ihe Solutloﬂs diSCﬁSSed m til[s sectlon are Onl 5 e (3] tin € Wi Srna:
a ys (Of iength at most 100). In the fﬂ OWINE sechion consl S50M/e More atvan
Era, ” 31 we S (}(11‘ more (f Ced

sorting algorithms.

Exercises
0, Solve:

fecon N :mt {N >1}; X array|0..N}ofint;
var A : array {0..N) of int;

sort o
{(Vi:OS‘t,(N:(Hj:0§]<N;ft.]xz'))
AViL7:0<15 1< N X (k) < X.(h))}

I

1 4
1. A sorting algorithm is called sfeble if the order of any two equal valuejl ;ismz:ciis
' cia:uged In terms of the previous exercise this means that the post-condi

o be strengthened by
1fjiAaXNe=Xg7 = haghj

Which of the sorting algorithms of this section are stable?
2. Denve a program that sorts N pairs lexicographically. The pa;rs_?re {z.3,y.4)
. (0 =2 < N} and point (g, b} is fexicographicaily smaller than (c,d} i
e<ceVie=cAb<d)

: &
3. Detive a program that sorts integer matox = ¢ array [0..44) x [0..V) suck tha
z is ascending in both arguments,

that
4. Derive a program that sorts integer matlix & - array [{}..I?’f) % [0..N) such
‘ (Vi,7:0 51 <7 < M:z.ils lexicographically at most z.7).

11.2 Advanced sorting algorithms

i i 71
In this section we present the more practical sorting algorithms fu:c:s;zeﬁjggﬁgx"
and Heapsort. Quicksort, invented by CAR Hoalfe, has wors -cmsR s N)
ity O(NV?). Its average time complexity, however, is O(N lcgN).i Pafr?eslt { ei ")
lairxiiiary storage. Mezgesort has worst-case time complexity GO{V log N).

Advanced sorting algorithms 179

auxiltary array of length V. Heapsort, invented by J. Williams, also fas worst.
time complexity O(N'log V), but no auxiliary array is needed.

Both Quicksort and Mergesort are more elegantly presented as TECUrsIvE programs,
The bag of integers that has to be sorted 1s divided into two subbags and the results
of sorting these subbags are combined to obtain the sorted Sequence corresponding
to the orimnaj bag. For Quicksort the division into subbags is the essentiaf patt and
for Mergesort the combination of the sorted sequences 15 the essential part. In this

book, however, we do nat treat recursion and both Programs are presented as ordinary
iterative programs,

case

11.2.0 Quicksort

As before, let hl0..N) be the array {o be sorted, Let z — #.7 for some 5H0<73 <N,
Performing the Dutch National Flag {(DNF} algerithm of Section 10.2.0 with

red i<z
white - fiz =2
blue fii>z

establishes post-rondition

(Vi:0gi<r ha <z}
A(Vi:r§z<w;h.t:~_z)
A{Vi:wS_z<N:fa.z>z]

Hence, 2f0..7} and hlw. N} still have to be sorted, i.e., this post-condition implies

h 15 ascending = R[0.r) s ascending A hlw.. N} s ascending

We may apply a similar splitting to H0..r) and iw. N), leading to four smeller parts

that still have to be sotbed. A generalization of this idea 15 expressed by the following
Invariant;

P R0 NYis ascending = (Vu:wg V.4 i ascending on)
where V 15 3 set of disjoint subsegments of {0..¥) and where for subsegment v:

hxsascendingonu = (Vi,J:ZEUJ’\jEU/\tSj‘:h.lSk.j)

A program based on P s presented below.

180 Sorting

V= (0.0}
oV #£AD
-+ ‘choose a € V'
iflengtha €1 V=V {at
[length.a 2 2
—+ ‘choose j € o’
vzi=heg
;*perform DNF with z on o’
{a=pv6 ANitEF:ha<2)
AWirtEy:ha=1)
A(Wir1ed:iha>z}

i
V= (Vi {ehu{stu (&

od

we
Why does it terminate?) To obtain o program m the guarded com.mlandsiazg;a‘%::,nnd
. * £, ¥
f v::ylo find & suitable representation for V, and we have to refine *cho: sea €V an
.“; a7 € o', Theset V can be represented by two nteges arrays = 1
‘choos . \
integer vanable &, such that

Vow {foa.pd) | 052 <k}

{ the
i ts: 4, 7, ond & At lenst one o
g ¢ splits sequence a into three por \ :
o DNrﬁ{’Tnd g has = length which is ot most hall the length ‘cf . Wiu:ln chc:ﬁ:(;
595""“;;‘"-5_ refined to ‘choose an element of V of minimal length'; we mtl:y mﬂ;:::mum
{t;l:ﬁ-nmlbser of elements of ¥ will nat be too large. Ea]uieed, let G.:'x L;e‘:nz;u;:xn o
S will contan if we start with a segment o

mber of elements that V' wi]

:.: cligose in each step an element of V of mnsmal length. Then

Gi=1
Gr <14+ G (ndive) (n22)

from which we infer
G € 1+ Mogn

- 1 g

e conclude that for x and j mzly ATraYys of EEI}gth i+*log € e Since

W tud that I ! log N ar ded splittin

a mmal element of V¥ into two parts ym%ds a mlmmal element again, weie resent ¥
m P H

Advaneed sorting algorithms 181

Vo {fes.yd) |02 < kY u {fp.g)}

such that

VMiid<i<k:gi—za< yiw1) = z.i-1))
and

{(Vi:o < <k:ig—pgLya—zd)

Then
PAk=0Agup<l = I 1 ascending

‘The value of 2log NV s easily computed, For ‘choose J € [p-g} we choose (for the
sike of symmetry) 7 = {p+q)div?, ve., 2:= h{{p+q)div2). The complete solution

15 presented below. The first part consists of the computation of the upper bound for
arrays z and y.

When this program 15 applied to an increasing sequence, then Afp..q}) 15 divided

into two parts that bath have length at most {g~p}div2 Let T.n denote the time

complexity of sorting an mecreasing sequence of fength n m this way. We have the
following recurrence relation for T4

T1=10
Ta=2T(in)+n fornz 2

(For the Dutch Motional Flag n steps are necded.)

This recurrence relation has T'n = nlogn es solution: for an already sncreasing se-
quence execution of this program takes O(N log N) steps,

Whien this program is applied to an arbitrary sequence and in each step the median
of sequence Aip..q) 1s assigned to z, the same recureence relaiion 1s obtamed. A lincar
program for the computation of the median does exist, but its derivation 15 beyond 1he
scope of this baok,

When ol elements of aze different aad in each step of the repetition the mimmum
of hlp..g) 15 assigned o z, execution takes LN(N+1) steps, which 15 the worst-case
behavior of Quicksort. It can be shown that the average execution time over ali per-
mutations of J0.V) 15 O{N lag N},

The complete program is presented below.

182 Sorting

Quicksort

{varn,m : ms;
nm:=0,1{m=2"}
idom < N —n,m=ntl,m=2o0d
{n 2 "log N} '
iivar &,p,q:mt; z,y 1 array[0..») of ink;
kp,gi=0,0,N
dok#0Vg-p>2 ,
—ifg—p < L~ k= kL p, g n.k,p.k
lg—p>2—{varr,w b,z int;

zi= f{(p+q) div 2}

irubi=pp,

:d’;ﬂt'ﬁ # bpjig haw < z — swap.raw; r,wis r4l, wtl
[hw=1z- w=wl
[hae > z — bim bl swapbaw
f

od

ifr—pLg-—w-shi=w yhi=q q=r

fo-w<r—p—nhi=p;yk=rp=uw
fi
sl k-]

Exercises

0. Let N > | and let R[0..N) be an array of inl‘.ege;s. Dgn.ve a program for thj
. cempuiz?tiﬂn of the unique element of k that oceupies position & when 4 1s sorte

(0 < & < N), without, sorting the entire array f. (Hint: use the DNT part of
Quicksort).

Advanced sorting algorithms 183
11.2.1 Mergesort .

Mergesort is based on the fact that two ascendiy
ascending sequence in linear time. To define the
¥, we use the following notation: for integer a an

of a followed by Sequence r is denoted as ar, T
by

& sequences can be merged into one
merge m of integer sequences ¢ and
d sequence z, the Sequence conssting
he merge of two sequences is defined
Tmy=zx ifyisthe empty sequence
if @ is the empty sequence
azmby) Ha<h
a:zmby-_—I (= m by) . ez
Wazmy) ifs <a

Tmy=y

Then m has the followmng properties:

T is ascending A y i3 ascending = Tmy s ascending

The bag of elements of zm Y i3 the sum of the bags of elements of z and ¥

These properties enable us to use merge in a sortin

an algerithm for the computation of the merge of ¢
specified by

g algorithm. Let us first present
W0 sequences. Program merge 15

[fcon M, & - ing {M>0n N >0}
var z : array [0..M+N) of int;
merge
fz=xmy}

I

From the definition of m we
Denoting catenation of seq

T array 0. M}of int; y - array [0..N) of int;

infer that a tail jnvariant ig appropriate

{cf. Section 4.4).
uences € and y by x -H-y, we define B by

Fo o 210.c) ++ (zfu. i) m yb.N)) = zmy
and P, by
H,ogasMAﬂsbsNAoscsM%N
Then

FoAala=Mv b=N} = z[ﬁ.c)foAa..A'f)-Iw}-y[b..N_) = Tmy

e e A WY

e St

184 Sorting

This lends to the {ollowing solubion to merge.

[fvara,b,c:mt
a,b,¢1=0,0,0 {invariant Py A Py, bound: M —a+ N — b}
doa# M ABEN
— if z.a <yb— z.er=za;a,c:=a+l, e+l
fyvb<za—zei=yb; be=btl,otl
fi
od
idoa# M — ze:=zaja,c=etl,etlad
idab# N = ze=yb be=biletlod
{Pona=MAb=N, hence z =zmy}

I

We can use merge for sorting as follows. Let a be an mteger sequence of length N.
Split o mto two sequences of length ¢ N (appreximately}. Sort these two sequences (by
any sorting algorithm} and merge them into the sorted version of «. When we hnve a
sorting algorithm that takes N? steps for a sequence of length N, this approsch yields
an algorithm whese exccution takes IN? 4 {N? & N steps, which is approxumately
twice as fast as the anginal algorithm!

OF course (compare this to the discussion in Section 5.1}, we may apply this iden
again and sort the two pasts of & in the way described above, lending to an slgorithm
that 15 approxumately four times os fast 2s the ongnal one. Tn general, we slart with
sequences of length 1: for integer arrny h{0..N}, we have that each segment Ali.i+1)
15 ascending. This is geperalized to

By. (Vi:0<1: hlisk.. (i+1)sk) 15 ascending)

in which we define k.1 = co for { 2 N. The bound for integer & 15 given by
P.oL<k

These mvariants are established by k:= 1, and

P; A k> N =+ his pscending

To obtan an O{N log N) program, we mvestigate the effect of k1= k2

Advanced sorting algorithms 185

Polk = ks2)
{ substitution }
(Vi:o<q: hiixksa {i-+1)#k22}
{ calenus §
(Vi:0 <1 M2isk (28 +2)sk) 15 ascending)
= { calculus }
(¥i:0<: A tnad2=10:}

i

18 ascending)

fixk . (i4-235k) 15 nscending)

Hence Folk = k+2} is estab
ence, : ablished by me
Prpul s | tging, forallz, 0 €1 Atmod? = 25
i:\([}r r_h;f;l,.);js}ea]:.]e}:{{;;]&)*k ”'(T-Q)*k)’ and assigning the result io h[i*.{f]’ ?::3-2;22‘?
, uce in iti L has .
Pon gy e cger variable n for a repetition thpt has invanant
Qo: (Vi:0<i1<nA 1mod 2

o han =0 hfisk . (i42bek) 15 ascending)

which are established by 2= 0. Furthermore

Qo A (n+ljsk> N = Falk = ksy
For the sake of convensence, we introduce variables 4. b ard ¢, such that
r 1 1 B
e=nrk A bw(ntllsk A o= {({rn+2Mk) min ¥

and we arrive at the following solution to “establish Polk = a2}t

{varn,a,b,c:mt;
8,0, c0= 0,0k, (2ekY min N
;dob < N
— hla.g)i= la.b} m hib..c)

in,a.bh o= 2 3
o NS ‘a+2xk,b+2¢k,(c+2*k}minN

1

Each step of this repelition takes 2k steps; since & 5 cremente. by 2k the total
pell t
il S, sme 151 i d aly
rumber of stegzs 15 at most N, SHECE‘. ks dDLlh]Cd at aach Stﬂill of the otiter repetition

the time complemt of Merpesor: (o] 0, g t (o] e OV
y [M s L3
{N[gN) From he program fmg:n nt ab 2,

]

P

186 Sorting

. . €
The computation of Ale..b} m hlb..c} 1s not performed sziub: we ntroduce auxi

ie G a.. ! 7

tary array z|a..c} and Ala..c}:= &la..b) m hib..c} 15 implemented by .

zla..c) == hla..b) m Alb..c}
ihle.c) = z]a..c)

The complete program 1s presented below.

Mergesort
Evar kg
k=
idok < N —
[var a,b,c: ink;
a.b,c:=0,k (ZxE) min N
jdob< V — .
[varp,q,r: mt; z - array [e..c) of int;
na,ri=abae
idop#£bAg#£ce
—ifhp<Lhg—zr=hp, rp=rt+lp+l
[hg<bop~ zor=hag;rqe=r+l,q+1
fi
od .
idop#b— zr=hp,rp=r+l,pt+io
idog# c— zr=hyg; rqgr=7+1,¢+1l0d
T a
idor# e ir=zr;r=r+lod
: j &) min /¥
i @b, ei=a + 2%k, b+ 2k, (c+ 25k) mi
od
i
' k= k2
od

Advanced sorting algorithms 187

11.2.2 Heapsort

array defined on {0..V).

One of the algorithms derived
outer repetition of Selection Sor
interchanged with .5,

m Section 12.1 ig Selection Sort. In each step of the
t, the minimum vafue of Aln..N] is determined and

The invariant of Selection Sort was obtamed by replacing in the post-condition of

sort the constant N by variable n. A replacement of the constant 0 by variable »
results 1n a similar program, i.e,

, i
ni=
idon#1
~+ ‘establish 1< 2<nAhg= {max: .1 Lifn: i)
; swap.g.n
i i=n—}
od

with mmvarnants:

hfn+1.Nis ascending
(Vi,];lSlSn/\n<j$N:h.tSh.j
1<ng N

A straightforward refinement of ‘establish 1 LalnAhg= (maxz:1 <, <n.hiy
yields an O(iv?) algorithm. To obtaiy a more efficient Program, we can, for instance,
strengthen the invariants with

£l = {maxsi:1 L:<n:hi)
This yields

i N
i ‘establish £.1 = (maxi: 1<, sn:hiy
jdon#1
-+ swap.l.n
jRi=n-.1

s ‘re-establish £.] = (maxi 1 Si<n:hi)
od

!
]L
|
!

188 Sorting
i = < n:hay
Agamn, a straghtforward refinement of ‘re-establish bl = (max: . [1S n:hi
ves nise to an Q(N?) algerithm. -
® The ides of Heapsort 15 to strengthen Al = (maxs : 1 <: < n . ki) to
so-called heap-condition hieap.n, defined in such a way that

heap.n s b ={maxt:l €1 <r:hi

The resniting program Heapsort has the following structure:

ni=N
; ‘establish heap.n’
;donsl
-~ swap.i.n
ini=n—1i
; ‘re-establish keap.n’
od

and heap.r is defi ed in such » way that ‘establish heap.N takes (N log N} SLEDS
B 1 1 ¥ [L

nd ‘re-establish heap.n £5 O(lﬂg N] ps, e 3 {N 114 N} OrLng
Bl tads ste The result 15 an O lo sorl!

algorithm.
Thus, heap.n should satisfy

(i) heap.n = Rl = (maxi:l <1< n: ki)
{if) ‘establish heap.N' has time complexity at most O(N log N}

i i t O{log NY
{iif} ‘re-establish heap.n’ kas time complexity at most Olog

i) &5 " ing’ , 10 view
A possible chioice for heap.n that satisfies {i) sl.: h&mni z§5 dezz:;l;z'g“;ab;; (;x;ﬁmng
ii i the question. We weaken hiil.nj 1s
o (U);i:lh:)srcicc}f lc_": E:i‘g:hi::h q< 15 o refinement. This partial order is defined on the
u par b4

positive integers by
13 = (3k:k20;7div2i=1)
Verify that — 15 o partisl order, i.e., forall ¢, 3,62 1.

1= {reflexivity)
1= 3 A 31— k= e~k (transitivity)
t—jA3—t = tm7 {anthsymmetry)

and thot < is a refinement of —, 1e,,

= ?ﬂ;ﬁ"’.-’"f&ﬁi’?:

Advanced sorting algorithms 189
=7 =15;

Note that the (immediate} successors of § with respect to —+ are 24 and 2441,
The hkeap condition s defined forn, 1 < <N, by

heap.n = Mig: 151y SR Ay hi2 hj)
Since (Y7:1< 54— J); requirement (i) is met;
heapn = Al = (maxzii<jy<n, k.7)

and, since heap.n is weaker than *Afl.nlis descending’, we may hope that requirements
(i} ond i) can be satisfied as well,

We first discuss ‘establish heap.N'| Le,, establish
(Vi,g:lg:gganz—aj:h.iah.j)
A possible mvanant is obtamed hy replacing N by varable . However, sinee
{Vf,]:Ndiv2<zJN“w{i—-+j)}
we prefer invaniants % and By defined by

By (V:’,_;:n<t_<_3§NAt—r]:b.i_zh.j}
P o<n

which are established by n:= Ndiv? and for which we have
FBan=0= heap. IV
Since

Fy(ni=n-1)

]

WViginS1S7SN A= jihizhg)

we choose {in a similar way as we did for Insertion Sort] as invariants for g repetition
that has post-condition Fy{n:=n-1}

Do (Vi,}:nsiﬁjgN:\z—rjAx#i‘:fz.i%h.j)
Q[I ﬂsk

which are 1nitialized by &:=n, and for which we have

190 Sorting

Fy(n:=n—1}
= { definition of P } N
Vig:m<1S3SN Av—j:hi>hj)
= { definition of Qg }
G ANVIESISNAE— 7 hEZ D)
= { definition of max }
Qo Ahk={maxy: k<j<NAKk—7:L7)
= { definition of —, transitivity of > }
Qo A Ak 2> A2k max i {2k41)

where we take h.i = —oc for 1 > N, From this derivation we conclude
Qo A2k>N = FP{ni=n-1)

which yrelds 2k < N as guard for the inner repetition. Let p be such that
{(P=2k v p=2k+1) A hp= h(2k) maxn{2k+1)

In view of the derivation above, we consider statement
ifAkzhp—skip | Ak < hp— swapkp fi

which establishes h.& > h.(28) maxn.(2k+1).

Foranyz, n <t <k A1 — k, we have, on account of Qg, fi > ok, i = h(2K),
and f.i 2 h{2k41). Hence, swap.k.p does not affect hi> hbkforn <1<k A i — &

Since fi.p may be decreased, only
Vytp<isNAp—j:ihp>h])
may be falsified (cf. the denvation of Insertion Sort), and we conclude that
ifhi < hp—slip [} k> hp— swapkp B

establishes Q(k := pi.
For the sake of convenence, we mtroduce variable g with

{2k<N = g=2k41} A (2k=N = qu)

This leads to the following program for *establish heap. N'

Advanced sorting algorithms 191

[var = : iy,
ni= Ndiv2 {invanant: B, A P
idon £ 0
— f{vark,p,q: int;

k,p,g:=n,2sn, (Zsn+ 1) min N
{invariant: Q@ A Q, A P=2kAg={2%+1) min [V}

idop< NV

= £ Ap> hg— skip Iap<hg— pi=gf
.{(p =2k Vp=2k+1) A h.p = h.(2k) max /. (2k4-1}}
Ak > hp — skip { hk < hpos swap.k.p fi

. 1Py gi=p, 24p, (2xp + 1 min N

o

od

1
{beap. NV}

Zk > N. IieﬂCE th@ iuﬂeI T iti g
= T epetltion takes at most IU st
SEBPS is at moskh: 3 . e}]S. Ti!e total Eﬁmbel‘ of

En:l<n< Ndivz: Yog 2{»)

22 { caleulus 1
M W

J g as

= { caloulus }
N

3 /; ?log ¥ g
e { calculus }

. N

I ./1 In & dz
=2 { catcutus }

i
iAN

So much for ‘establish lteap, N’

yields Anpotation of the remaming part of the program

i
L

192 Sorting

don#1
— {heap.n, hence, heap.{n—1}}
swap.ln t
= -1

{(Mi,j:1<s187n At~ 3 At# 1 hi2 hi)}
; ‘re-establish heap.n’

od

The pre-condition of ‘re-establish heap.n":
(Vi,7.1€i<3<8n A= A1#1:hi> i)

equals Qo(n, £, N === 1,1, n}, leading to a solution which is similar to the inner repetition
of the previous program:

{var k,p,q:mt;
k,p,gi=41,2,3minn
idop<n
~ ifhp>hqg—skipl hp<hg—op=qf
;ifFhk 2 hp—skip | Ak < hp— swapkp f
1hypoai=p,24p, (2%p + 1} minn
ad
¥
{heap.n}

Execution of this program fragment takes at most *log n steps and, hence, the total time
complexity of Heapsort 1s O(N log V). The complete algorithm is presented below.

The heap structure 15 used in many algerithms. Often an slgorithm is derived in
terms of sets, When the operations on such a set V, say, are

Vo=V U {z}
and

Vo=V {z} where z=(maxi:: €V :{)

then a heap (also called a ‘max-heap’) may be used to implement these operations
efficiently.

Advanced sorting algorithms
Heapsort

[var n :int;
nz= Ndiva
;don #Q
—+ [var k p g int;
kpgi=n, 2en, (20 + 1) min N
idops N
= ifhp>hg— skip

H h.p(h.q—wp;m i
HE k2 hp s skip !

lhk<hp— swap.kp fi

i£,P1 g7 p, 24p, (24p + 1) min N
od
I
= n—1
od
=N
jdon # 1
~ [[var k,p, q: int;
swap.l.n

in=n~—1

ik:P:q:* 1t2;3min7’1

idop<n

d ?f hPE ﬁ-q — Skip n hp < fL.q ~pi=g R
Ak > hp— skip | hk < hp swap.k.p fi
ik, Prgi=p, 2%, (24p + 1) minn
od
!
od
I
Exercises

0. Derive an O(Nlog N} program that establishes heap. N, using invanant
heap.n A 1< N
L (Museun peak attendance) Integer arrays zl0.N) and yj

- pes : | 0..N} are given. A
musewm 1s visited by NV people (N > 1). Person 5L, 0 <1< N, arrives ::r.tg mo[:aent

193

194

Soriing

#.t, is present dunng interval [za..y.1) and lea'ves at moment y.1. Arrai E+ (1; :
Esc'ending. Derive a program for the computation of the maximum rumber
visiters Ehat are simultaneously present m the museum. .

Chapter 12
Auxiliary Arrays

Caleulations with expressions that occur m an mvanant oftes Bive nse to Lhe mtroduc-
tion of (auxiliary) variables, together with an accompanying mvartant {ef. Section 4.3).
In this chapter we discuss Some programming problems for which these calculations
give rse to the mtroduction of arrays,

12.0 At most § Zeros

Our first example is a segment problem {cf. Chapter 7). For mbeger array X[0..V) and
natural K, we are asked to derve g program for the computation of the length of a
longest segment that has at most I zeros. As an additional restriction, it ts not allowed
to inspect an element of X more than once (X may, for example, be a sequential file
that can be read oniy once). A formal specification of the problem is

[con Nkt {N >0 A K204 X array 10..V) of int;
varr it
S
{r=(maXP,q:05qu$N/\Mp-qsfi'iq~p)}
3

where

Mp.q:(#a:pﬂz(q:}f.:mﬂ)

Note that Npg < K holds for empty segments, 15 prefix-closed and is postfix-closed.
Following the strategy explained in Chapter 7, we mtroduce as invariants

195

4

196 Auxiliary Arrays

Py: r={(maxp,q:0Sp<g¢<nANpg< K :qp)

@ s=(minp:0<p<nANpn<K:p)

leading to a program of the following form.

n,rs:=000
don# N
— ‘establish Q(n:= n+1})
7= rmax{n+l—s)
yni=ndl
ad

Tor Q(n:=n+1), wederive (0 < n < N)

(minp: 0L p<ntl A Np{ntl) < K p)
{split off p = n+1, M{r+1l{n+1}=0, 0S K}
(minp:0<p<n A Np(nt+l) £ K :p) min {(n+1)

and for 0 < p<n < N:

Np(n+l}< K
= { definition of A}
(#i:pi<ntl: Xa=0< K
= {splitoff e =mn,p<n}
Npn+ #(Xn=0<K
= { case analysis }
Nprn<K fXn#0
{ Npng< K-l i Xn=0

From this derivation we conclude that for the invariance of
(minp:0<p<nANpngK-1:p}
is needed. Of course, for this expression

(minp:0<p<nANprSK-2:p}

is needed too, and so on. Therefore, we replace integer s by integer array s[0..K1, with

At most K zeras 197

Q- (VF::ng51’(.3.kz(minp:05p5nAMp.nSk:p))
F‘erﬂ<k5f(. we have

(minp:0<p<nyg A Np.(n+1) < k- P}
= {% > 0 implies Na(nt1) < k}
(minp:0<p<y A Np.(nt1) <k:p)
= { previous derivation with I replaced by k}
{(m’inp:{)spgn/\f\f.p.ngk:p) fXn#0
(mznp:ﬂgpgn AJ\f.p.nsk—l:p) fXn=0p
= {Q}
[sk Xm0
| s.(k=1) #Xmn=0

and (for k =0}

(ming . LpSndl A Np(n+1) < 0:p)
= { case analysis, a3
s HXnzp
{ n+l if X =g

This yields the following solution.

Ivarn:int; ¢: array [0..K] of int;
iz
;j{'vara:int; 8=0idoa® K41 = g5:=0. a:=atlod]
{invariant: B, A Pa g} !
idon# N
— X n£0— skip
fXn=0- [vara:int;

ax= K
idoas# 00— 5q:m s{a—1}: ai= a~f od
;80 =n41
1
fi
3P rmax (nb1-g. k)
VR ekl

od

A ittt) RO

198 Auxilfary Arrays
Largest square under a histogramn 199
When al} elements of X are zero, execution of this program takes K + NV steps. In lvara,b: int;
the mner repetition array s is rotated over one piace. Using s os a so-called circuiar a,b,r=0.00
array, such a rotation corresponds to a shift of the origin over one position. More . T
’ R A 1 ,dU[I#,{VV—'A_a_{)
precisely, introduce integer variable f# and replace @ by i .
=i Awb— o= rmax(b-a) ;6:= j41
G (VEO<E<K:s.(h@k)={minp:0<p<n ANpr<k:p) f—Aab — ar=ai1
! fi
where @ denotes addition module [{+1. This results in od
[[var n:nt; s - arrayi0. K]of int; iT=rmax(N-a)
n,hi=0,0 {r:(maxp,q:ﬁ_équanA,p,g;q._p”
. illvara:int;a:=0;doa ¥ K+l — sa:=0;a:=adlod} I
; idon# N -
' ’ F for which 0 € a < p < .
w3 Xon £ 0 - skip and add %= @565 N is one of the invanants, We introduce boolean varable c {
[Xn=0—f=dK;s.h=n+l] , :
fi ¢ = Aab i
i jre=rmax(n+l-s.(h® K)) i
imi=ndbl as an additional invariant. Since 4.0.0 holds, ¢ 15 initial; : i
iy 3 bi= b+1, which is guarded by A.a.b: 1€ 1 imbialized at true. We consider "3
: i
3 J. A.a.(b+1) it
This program has time complexity O(N + K). = { definition of A1 P
i ‘ [
" ' (Viia<1<bsl (XA 2 b l-g) it
3 . . = split off 1 = ']
: 12.1 Largest square under a histogram o Vi {split off » ,bf @5 b}
: (12“53<b¢k-120+1-»a)AX,&25+1-G f
For istogram X{0..V), i.e., integer array X for which (Vi: 0 <: < N : X.i 2 0) holds, ; - t heading for A.a.6 }
we are asked to compute the largest square that fits under it. A formal specification is o (Vica<i<b: X 2h—aAXistb—a) A XD> .
i = {Aab] - i
con N :mb{N > 0}; & - array{0.Nlofint {{(¥Vi: 0<1 < N : Xi>0)}; i . N
![varr:int_ { :) { i {Vz,agz<b:}£,z;{-bma) AXD>btl-qg
s ’ : = { express as ‘number of "}
{r=(maxp,g:0<p< ¢S N A Apg:g-p)} Broass<h Xosba)=0A Xb2 bh10
. - . . i
2 | The value of b~z 15 within the range 10../¥], hence, A.a.{b+1} equals ;
g fiere '
¥ Flb=a)=0A X4 > btl-g
Apg = Virp<Li<g: Xi>g-p} L
: provided that we add additional invarmant
Note that A hoids for empty segments, 15 prefix-ciosed, and is postfix-closed. Hence, . 17}
we may apply the program scheme maxseg of Section 8.2: : Q- (Y7:0<;5 N Jr={(F10<1<b: X1 F3)

200 Auxiliary Arrays
The length of a Jongest common subsequence 9q]

The change from umiversal quantification to ‘number of’ quantification 15 a .
general technique, The fist step of the dervation above 1s

Aalb+1) = (Yiia<i <41 Xi> btlma) , 1s an mvanant. In many applications of this pro;

and one mght be tempted to add o = {min: . a < < b: X4} to the
mvanants. This yiclds no problems to b:= b1, but it does pose a problem
to a:= a+1, since min has no mverse. The mtroduction of the ‘nember
of’ quantification solves this problem. Such a transition 15 also applicable
to exsstential and universal quantifications,

\ The statements neede

d for the iava : :
following progmm. rance of Oy are easily derived, and we obtan the

fvara,s: g c- baal; £ . array {0..V] of int;

In the second alternative, guarded by —A.a.b, we have an increase of a by 1. Note that a.b,r e:=0,0,0, true
. —A.ab mplies a < b and, kence, X.(5~1) 15 well defined. For 241 < b, we have ilvark :int: k1= Oidok o N Fhem 03k im kb1 a]
=+ J.Kluxp yRI= K el

idobE Ny
= e — ri= rmax {b—a)
, jem= filb—al =0 A X5 2 btl—a
iHXbg N FAXB) = F{X DY 1 [Xxb>n_ skip fi

Adat1)b
= { definition of A}
(Viia+tl €:<b: X2 boa1)
{sphit off 4 = b—{, a1 < b1 |

ibi=b
(Yizatl 1 <bmtl. X2 bmam1) A X.(bo1) > buael Joc s oim :{Ib > bnnt
= X - — g
= { see below } GE X g < =
1 - N . WL — " =
X.(b~1} 2 b—a—1 e a+_1 B f(Xa) -1 [Xa>n— skip fi
provided that (Vi:a+l St < b—1. X4 > b—a—1). Since A 15 postiix-closed, this 1s fi
mplied by A.a.(b~1) and we ndd od
; iT= rmax{N—a)
G Aafb-1y 5.

to the pvariants. Initially @, holds, the incrense of b by i has guard A.a.b and, since
A 18 postfix-closed, it 15 not violated by a:= a+1, { 12

For the case a4t = b, we have

Afa+1)b

= {a+1 = b, defnition of A} i - A subsequence of sequence s 1s cbtamed b Femm

- i szero or more elements of 5. A common subsequence of sequences s andj:! 15 aﬂ::tlf
_ [(Vi:0< i< M. Xi>0) ; Cz‘;:f;cech both s and ¢ The length of o sequence 1s itg aumber of elements. We ‘

] < > i hich ef two integer sequences, represented by integer arrays X10..Af) and Y{0.N) for

X(-1)30 _ ! which the length of o longest common subsequence has to he computed)

= {atl=b} . LetIc_q.mn(G<m<MnU< .
% . =m< = nZ N deaote the |
ol subsequonn ot Xloom) 2o Vitons o e length of & fongest commion E

and we conclude that, 1n either case, Afo+1)b = X.(b—1) 2 b—a—1. lesum.0 = ¢

lesOn=q

202 Auxiliary Arrays

For0<m < M A0 <n <N, we express les.(m+1).{n+1) as follows.
When Xon = Y.a, each common subsequence of Xi0..m} and Y{G..n} can be exteaded
by X.m, hence,

i

Am=Yn = les{mtl){nt+l) =1+ fesmn
Wiea X.m # Yon then cach common subsequence of X[0..m+1) end Y|0..n+1) 1s
cither a common subsequence of X[0..m+1} and Y[0..n} or a common subsequence of

X[0.m} and Y[0..n+1}, hence,

Am# Y = ks (m+lh(r+1) = les{m+1)n max les.m.(n+D)

We conciude that ics 15 formally defined by

lIes.m.0 =0
ics.tn =0

1+ les.m.n EXm=Yn

les{m+1){n+1} = { ics.(m4 1) max lesmdntl) FXm#Vn

A formal specification of the problem 15

feon M, N:mt{M >0 A N>0k
X array |0 AN ofing;
V¥ o aveay QLN of int;
wvar r ! nf;
g
{r=les. M.N}
i

In the post-condition iwo constants (M and N} occur. We may replace both of them
by vanables and iry as snvariant

r=lca.man

This tnvariant 13 established by, for mstance, r,m, = 0,0,0, r,m,n:= 0, A0, or
rym,nza 0,0, V. This indicates that this invariant is rother weak. Moreover, as gunrd
of a repetition, we would iave m 2 M V n # ¥ ond, hence, mspection of X.m or ¥in
has to be guarded. In view of these problems, we repince only one of the constants by
a varinble {Lkereby destroying the symmetry) and we consider iavanant

r = lesan N

The fength of a fongest commen subsequence 203

which 15 established byrm:=0,0 A
t v 0, G0 An iners f 1
and, according to the definition of Ics, Icse:tzfvfl?y ey Sprssson iy

: t y lesm N, and les, —
'a;,rhce;u;eded .for_ its ccmpgtn(‘.mn. The [ast expression gives ns‘e to ics :51’?;1—)2{”— |
tioze, we miroduce integer array R0.N| and accompanymg znvanlau.t b et

B (Vit0<1< N fam [es.m.q)
where the bounds for m are given by
Fioogmgy

Then

Pym:=0) = Vit 0SS N:hy =0}

and

PBoAm=M = AN =les, M.V

Turthermers, we have

Pa(m =)
5= { definition of 7, }

(Vi:0<t < N:haa les.(m+1).4)

which 15 established by another re

etiti
v petition, repiacing constant N by varable 0 with

Qe . (V:’:Qs:g:::h.::

s (ma1id A (Vitn i<V hy e 1
o benim { n x__N.h.z-ics.m.t)

for which we have B

= 3
0 n< N, we derive Qo{n:=10) and Gy An=N = P

(m == m41). For
Qo(n = n+1)

{ definition of Qe b

0<t1<ntl:na= tes.(m+1).4) A (Vi
{split off 1 = n4.1 }
(Vi:0<:i<n:ha= fes(m+1)4
A Rfrd1) = los (m4 1) (1)

[

(Vi:
Al <1 SN g les.med)

H

YAV ngl <2 SN :ha = desand)

T e,

204 Auxiliary Arrays

The first twa conjuncts of the fast predicate are unplied by Qj, hence,
R(n+1) = fes.{fm+1).(n+1]
has to be established, for which we have

fes.{m+1).(n+1}
{ definition of lcs §

{ 1+lksman fXm=Yn

1 les.(m+1)n max lesm.(n+1) f Xm#Yn
= {Qo}

[1+isman HXm=¥n

1 hn max h.(n+1) fXm#Yn
Evidently, we need les.m.n as well, and we add to the invanants

t3. a=ls.mn

The mvariance of Qg 15 no problem: Qp implies h.{n+1) = les.m.(n+1). Thus, we have

{Qo A GY A Qy Ani N

if Xm=Yan — a kn+l)=hint+i}, l4a

i Xom s Yon -+ a,h{n+1i An+1), hamaxh (n+1)
fi

{&a A Gy A Qa){ni=ntl)

Since multiple assignments are not ellowed when arrays are involved, local variable b

15 mtreduced. The resulting program is presented below.

The length of o longest common subsequence

fvarm:int & s array [0..N] of int;

m:=9
ik rmt ko= 0 dok Ntr— bk

: # Ki=0 ko= k
A k+lad]
vdom £ Af

=+ [[varn,a: mnt;
noaz==0,0
{Qongya &z}
don £ N
— fvart:mnt;
bi= hfn+i}

X m=Yn— Adntiyi=f4a

E Am#£Vn— bi{ntlli=hn maxi.(n+1Y

ial

1
in= g
od
I
R TR]
od
ir= N

205

206 Auxiffary Arrays

12.3 A shortest segment problem

In our final example, we demounsirate ow an effictent soiution to a programming
problens can be obluised in & number of steps. These steps are not specific for thifs
particular problem but they occur in dervations of many other programming problems
as weil. To illustrate these steps, we use the following segment problem.

For mteger array X[0..N), ¥ 2 1, we wish to derive a program [or the computation
of the length of 2 shortest segment in which the maximum value o that segment oceurs
exactly twice. A formal specification is

feon N mt {N 2 1]; X : array j0..¥) of int;
var 1 1 iat;
5
{r={(minp,g:0<pSq< N A Apyg:q-p)}

|
where

Apg = {fitpsi< g Xi={maxy:pSy<qi Xf))=2

The ‘shortest segment properiies’ of Section 8.2 do not hold for predicate A, Bven
when we change A to

(Fripgr<g:Na=(maxy:pSy<q: Xj) 22

(which does not affect the specification of 5}, we only have ‘.4 holds for empty
segments’. As a consequence, we need s different approach to soive this problem.

A shortest segment |p..q| that satisfes A 15 charactenzed by
QEp<q< N AXp=XgA(Viip<i<g: Xa< g}

it has length g+1—p. Hence, we may rewrite the post-condition of the specification as
r=(minp,g:0<p<g< N A Bpg:gtl—p)

where

Bpg = Xp=Xga Viip<i<qg:Xi<Xg)

Replacing the consiant N by mieger variable n leads to

A shortest sogment probiem 207

. r=(minp,q:0$_'p<q<nf\B.p.q:q+]—p}
P i<n<py
which are established by ==

‘ Lo R -
yields the expression o2 For Py(n:is=ni1),

& straghtforward derivation

minp: = X]
{minp U$p<u/\X.p-u\.nz\(V::p<a<n:X.=<X.n):n+1—p)

The equation
}E GSp«:n!\X.p:X.nA(V:’:p(x(n:X.i(X.n) {*3

has at most ope solution; if it exists, then it equals the solution of

e 95p<n1\X.sz.nA(Vi:p<r<u:X.i<X.n)

This equation also has at most one solution; if it exists, then it equals the solution of

7 95p<nl\(p:GVX.p%X.n}/\(Vi:p(z(n:X.z<.’Y.n}

This equation has, since n > 1, precisely aae sofution, viz,

{minp:¢<p<na Mitp<ian: X, <X} p)

So, for 3 defined by |

{smUVX.sEX.n}A(}53<n/'\(Vi:s<:<n:X.i<X.n)

we have

Ke=Xun = 515 the solution of {*)
Xsd Xon = {*) has no sofution

The reiation

(5:0\1X.s_>,X.n]A[}gs<n/\ (Vi:s<t<n:X.z<X.n)

1% establishe

d by a repetition that is guatded by s #£90A X5 < X.n and has mvanant

Q- G_Ss(n/\(Vi:5<!<n:,\'.i<X.n)

This {eads Lo the Grst solution:

T
; Lo

o w"%,g%‘

i

208 Auxiliary Arrays

fvarn:int;
n, 7= | oo
{invarant: P, A Py, bound: N—n}
idonrn#= N -
—+ fvar s : int;
sr=n~]
{invanant: @, bound: s}
idos#0AXs<Xn—si=s5~lad
i Xs=Xn — r=rmin{nti-s)
[X.s% Xon — skip
fi

s7o= el
od

I

For 1ncreasing X, execution of the mner repetition takes n—1 steps and, hence, this
program has time complexity G{N?). A more efficient program is obtained when s can
be decreased by more than one. We reconsider the definition of 5 and we define for

I<7<N

fa={(minp:0<p<yA{Vitp<i<ji.Xa<Xf):p)

The program fragment

= p—4
{@:05s<nA(Virs<i<n.Xi<Xn)}
dos#0AXs<Xn—3:=s5—1od

establishes s = f.n. We derive

QAs#0AXs<Xn
= { definition of @ }
(Viis<i<n.Xa<Xn)AO<s<nAXs<Xn
= { definition of f}
(Viis<i<n. Xi<Xn)AO<s<nAXs<Xn
AViife<i<s: Xi<Xs)A0<L fs<s
= { transitivity of <}

A shortest segment problem 209

(Vi:f.s<i<n;X.z<X.n) ADL fs<n
= { definition of @}
Qls:= f.s)

Hence, 5:= g} may be replaced by g:=

accompanying mvariant f-s. We intraduce integer array f{1.N) and

h {Vj.iSJ(ﬂ.,f._1=(mmp:05p<jA(Vz’:p<z<j.X.z<X.j):p})

This leads to the second solution:

[varn :int; f- array [1..N) of int;
n,ri= 1 oo
{invariant: P A Py A Py, bound: Ne-n}
idon#£ N
-+ var s : int;
=]

{invariant: Q, bound: s} !
idos£0A Xs< X — §:= fsod
ifni=s
HXs=Xn— = rmin (n41—s)

| Xs#Xn o skip

fi

i

iRi=n41

idon gt NV
= Si=m—~lifi=q
;dos#£0A X <X si=foik=f41o0d
=g
TR]
od

A shortest segment prablem 213
216 Auxiliary Arrays

. This leads to
An mmvaniant of the inner repetition is

o= fofum1) A (Y5101 <k: [fnml) #0) B

nai= 1,0
idon g N
where *.x 18 defined by) Tt Sma-liki=0

i s ;do\"#ﬂ"\X-5<X-n-"~'s;mf_5;[;:
faz=x and o= f(fziforiz0.

= k+10d
. i vaiz g—hopi
. 9= fz <z forx >0, sequence f*.(n—1) 15 a decreasing sequence with Em; R
Sl!:::ant o. I:.e%. o denote the fength of this sequence, .., add integer varinble a an . Trt e gl
: mvarnant : od
B . a={ming:120A [(n—1)=0:1) In each step of the ouigr tepelition a 15 ihcremeniod by | and decremanted by the
i . ; etition has post-condition number of steps of the mner repetition. Since the outer tepetition takes N1 stops,
where £.0 s defined as 0. Tho inaer rep the final value of & equals
s=fHn=1) A s =L A (Vii0Si <k 1) £0)
‘ = fk] N
» For i z [, we have

(the total number of steps of the mner tepetition)

From the mvanance of g 2 0, we conclude that the total number of steps of the myer
fin repetition is at most V—1, Hence, the program 15 linear.
= | definition of ff,i> {}
—i t £n) Although the second program 1s quite satislactory, there 15 another interesting trans-
P " formation possible. From the mvatlance of
= {smj.nf\s=fv(ﬂ“1)}
f'"‘.(fk-(ﬂ‘"‘]-)) 5= fk.(nml]
= { definition of '}

FHE (1) we mfer that culy the values of sequence {*.(n—1),
computation of fn. Moreaver, sequence f*
and, hence, removing the first & clements and adding th
record the sequence fr.n-1) is by the intr
Becompanymg mvariant of the outer repetit

I <1< aare needed for the
115 obtaned from sequence f'.(n-i} by
¢ value of 5 10 front of it. An easy way to

oduction of an wtegar array BN with
ion;

{(minz:i20A ffr=0:d)
= (Pr=nandn#0}
(mane:iz 1l A fa=0:1) Viilgi<a: bt et

{ denivation above }

{min{L LA FH (-1} =0:1)

{ dummy chanpe: 1:=1—k+1}
{minlt L2 kA P n—1) =0 e-kt1)
= {(Vi:0<i<k: P in-1} D))
(mint:i >0 A frfin—1)=0:1~k+I1)

{ defintiion of a }
e—&+1

This yields the third solution:

]

Foles

253

hert
S

A shortest segment problem 213
2 Auxiliary Arrays
21 R .) 1. (Balaneed Segments)

int: h: . ing;

; Ei‘“ﬂ":::::”’:"ﬂi‘ ;:my [0. M efin . ;[::: N l I::t N 20} X : array (0.} of jnt;
) T:int;
e T:j; var s 1nt; I i
smu:é,\X3<anﬂ-—a—1-g;xh.aed : {f={maxﬁsq=ﬂSPquNAA-p.q:fr—p}}
doss \ . = i

sha=s;a=a+l
A Xs=Xn = ri=rmin(nyl-s}

i where A.p.q s defined by
T

-] X5+ Xon s skip Apg = #i:pSt<q:X.sz}:-c.(#::p51<q:x.t=:1)

! fi

, i 2. Let ¥ be & natura) number, A partition of N 18 1 bag of positive integers that
I has sum N. For example, 4 has the following partitions:
od
I

ML {131, 12,9, 1, 1,2, and 11,4,1,1),
i in difference
X he second solution. The main di
i bas the same complexity as t : erence
Thsf Ptmizmh may be implemented as a so-called stack: e?emeults are a;ilcz:i v:me
- L:J:\:eéufmix its ‘top’ and only the storage that 15 ;}ee;ledl(zg.. t:;:;:x;he L e
that fer the third solution.
ay have) 15 used. Scme people pre
;i:la:t;nmm);btmaad in & more calculational way, we prefer that.

One is nsked to denve an O{N?} program for the computation of the number of
partitions of naturat anumber N

(Hint: des

ne for natural p and 7 function Cp.q by

C.p.g = 'the numbar of partitions of g 1n which each element 15 at mogt P i
i
and denive a suttable recurrence relation for .) !
Exercises 3. Denve an O} progeam for the computation of the number of subsequences of
integer array X0, N} that equal the sequence 0. J¢ {0<NAao < K.
: rablems, :
Satve the following programmung p 4. {Lengest upsequence) Derive en O(N log N) program for the computation of the i
0. flcon N : mt [N 2 0}; X : array [0..V) of int; length of o longest Increasing subsequence of the tteger array Xio.N), N> 1. j
var r 1 1nt; 5. A partition of o set V ig 5 collection of non-empty subsets of ¥ whose unjon }!
s) equals V. For example, the partitions of {a, b, ¢} are I
. . Ap.g:q-p) :
=(minp,q:0SpsqgsN A
Ii{r (’ {{a.b,e1}, t{a,8}, {c}}, {{a}, {b.chh {{a,ct. {8}}, and t{a}, {8}, {c}}.
where A.p.g 15 defined by . Derwve a program for the computation of the autaber of partitions of 4 et of N, ;,
" . N 2 0, elements,
Apg = (Vii0<i<80: (F5:p<g<q: Xg = 1))

8. {Largest rectangle) For integer N, N>1, and listogram X0..N), re.,
(Vir0<:i< . X 2. 0), one 13 asked to derve a
of the size of o rectangle that fits under

program for the cemputation
X and that hag maximal area.

T T T
o

I TYE P o

Index

abort, 16

abgorption, G

all efements different, 119

afl zeros, 111

annoctation, 22

array, 4{

nrray asmgnment, 152
muitiple, 154

ascending, 48

assignment, 17
muitiple, 18

associstive, 44

associabivity, 6

at least (wo zeros, 146

at most I zervs, 195

at mast fen zeros, 117

nuxifiary arrays, 195

batunced segments, 213
Binery Search, 100, 102
bool, 13

bousnd function, 30
bound varable, 9

Bounded Linear Search, 95, 96

bubble sort, 176
bucket sort, 171

catenation, 20
celebrity, 107

arcujar array, 198
cowmeidence count, 138
commutative, 44
commuistivity, G
complement rufe, 7
cor, 39

S

e

congunction, 4
constant, 38

convex, 149

coupling mvanast, 167
credit, 71

De Morgaa, 6
decreasing, 48

def, 19

descending, 48
Dijkstra, Edsger W., 29
disjunction, 4
distribusivity, §

div, 18

divmod, 83

dummy, 9

Duteh National Flag, 161

efficiency, 51
equivaicnce, 4, 6
exponentialion, 57, 77

false-true rules, 6
Fibalucer, 82, 91
Fibonaeei, 63, 88
frequency table, 155
function application, 40
fusc, 7

ghost vanable, 86

greatest common divisor, 2%
guard, 23

guarded command, 23

puarded command languspe, 13

f-sequence, 80

o

o

Ieap condition, 189
Heapsort, 103

idempotence, §
idestity, 44
umplication, 4, 6
increasing, 48
mference ruie, 13
mner block, 38
insertion sort, 174
mt, 13

Invariance Theorem, 31
mvanant, 29
tnversion, 170

largest rectangle, 213

{urgest square under a histogram, 188
fom, 56

left-minimel segments, 115
Leibniz’s Rule, 5

lexicogeaphicat order, 149

linear combinations, 88

Linenr Searh, 94

longest common subzequence, 261
longest segments, 110

longest upsequence, 213

max, 45

MATmMUIn accurs {wice, 206
maziocafion, 106

maxsep, 143

mazsegsum, G7

rerge, 183

Mergesort, 186

auin, 45

manmal disfanee, 136
minseg, 145

mod, 18

monrotome, 122

museumn peak atlendance, 193

negation, 4, &
non-defermimsi, 15

Index

number of, 48
a, 51

pattition, 213
pest-cendition, 13
postiix-closed, 111
pre-condition, 13
weakest, 15
predicate, 4
predicate transformer, 14
prefix-closed, 111

quantification, 44
exustential, B
uzmiversal, 8

Quicksort, 182

range, 8, 45
empty, 9
non-empty, 9

rotafion, 164

Saddleback Search, 127
scope, 40

searching, 92

Searching by Elimination, 105, 108
segment, 40

segment problems, 110, 140
setection, 23

selection sort, 175

semi-colon, 21

shortest segments, 122

Simple Array Assignment, 157
sumple swap statement, 160
skip, 16

Slope Search, §27

sorting, 170

specification variables, 13
square roof, 55, 87, 102

squate braciets, 5, 10

stable, 178

stack, 212

215

216 Index

starting pil location, 109
state space, 4, 13
statement, 13

stronger, 7

strongest solution, 8
subsequence, 241
substitution, 8

sum of two squares, 133
swap, 159

tail invariant, 74
tail recursion, 73
Teacher's Manual, x
term, 8, 45
termination, 30
type, 13

wvar, 13

wealker, 7
weakest solution, 7
Welfare Crook, 139

zero, 46

